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Abstract—A wireless Sensor Network (WSN) consists
of many low-cost and energy-constrained sensing nodes.
One method that offers a great potential for improving
both the lifetime and the durability of WSNs is to deploy
multiple data sinks instead of the standard approach
relying on just one sink. In this paper we focus on multiple
sink deployment problems and discuss different methods
to estimate the optimal placement of a given number
of sinks. Most previous works study unconstrained sink
node placement, assuming that the sinks can be placed
anywhere. In practice, there may be areas which are
occupied by obstacles, or are beyond wireless range, and
therefore not viable for sink placement. Our method
inherently considers deployment constraints by inspecting
the routing topology and therefore avoids connection black
holes when proposing optimal sink locations. We have used
an anycasting tree-routing scheme, and have performed
extensive simulations in a wide range of realistic scenarios.
The results show that a constraint-based deployment
algorithm is paramount to get the full potential of multiple
sink WSNs.

I. INTRODUCTION

A wireless Sensor Network (WSN) consists of many
small and low-cost sensing nodes. The two basic
challenges in WSNs are energy efficiency, due to the
battery-powered sensors, and scalability, due to a po-
tential high number of devices needing to interoperate.
In this paper we aim to prolong the network lifetime
and improve the scalability by deploying multiple sinks.
In addition to reducing the average path length between
a sensing node and the corresponding data sink, the use
of multiple sinks also provides energy fairness by load
balancing. The method also gives redundancy if one of
the sink-nodes should fail due to energy shortage, or if
it is vandalized or stolen.

While finding the optimal number of sinks is by
nature an off-line problem mainly constrained by de-
ployment cost, determining the optimal placement of
the sink nodes is a more difficult challenge. The initial
deployment of the WSN can be done either in a
structured or planned manner by a network designer, or
in a semi-random way (e.g., an air-drop). In any case,
the optimal placement of the sinks cannot be known
a priori, and there is a need for heuristics to facilitate
relocation of existing sinks or to position new sinks in
the network. Our algorithms aim to find the optimal sink
locations for a given network topology and coverage.
The algorithms are employed at a separate computer

and sink relocation is then performed either manually
or by mobile sinks or robots.

Most works study unconstrained sink node place-
ment, assuming that the sinks can be placed anywhere.
In practice, there may be areas which are occupied by
obstacles, or are out of wireless range, and therefore
not viable for sink placement. Hence, in this paper,
we study constrained sink node placement, meaning
that the sinks can only be placed in a subset of the
WSN scene. Via extensive simulations we show that the
constrained approach leads to improved goodput and
lifetime compared to the unconstrained approach.

Before presenting our own schemes, it is worth re-
viewing some of the preceding work regarding multiple
sink deployment in WSNs.

II. RELATED WORK

Oyman et al. [1] propose to find the optimal place-
ment of multiple sinks using the well-known K-means
clustering. The cluster centroids for the k clusters are
chosen as the optimal placement for the sinks. The
approach is used to minimize the number of sinks
for a predefined minimum operation period, and to
find the minimum number of sinks while maximizing
the network lifetime. The K-means method is further
described and used as a baseline later in the paper.
The approach presented in [1] requires global location
information to find the optimal sink placements. Vincze
et al. [2] aim to relax this requirement by approximating
the location of nodes with unknown positions. The
system is, however, based on a geographical routing
protocol, which requires a functional location system
in the WSN.

The approaches taken in [1], [2] study unconstrained
sink placement. This limits their practical use. As
discussed in the introduction, such schemes are based
on the assumption that there are no physical boundaries
limiting the proposed placement of the sinks. The pre-
sumed optimal sink locations found by the algorithms
are therefore not necessarily viable in practice due to
physical constraints in the scene. A proposed location
may actually end up being outside radio-range of the
surrounding sensor nodes. The work by Dai et al. [3]
aims to solve this problem by only proposing sink
positions at locations that are known to be in commu-
nication range with at least a subset of the network.



To accomplish this, they restrict sink placement only to
locations already occupied by sensing nodes. However,
since their network model is restricted to Manhattan
grid layouts and assumes uniform link lengths and link
weights, the approach is not useful for semi-structured
deployments. In this sense, the works [4] and [5]
are therefore considered more flexible. Although both
works study relay node placement, they can be adapted
to the sink node placement problem. Deployment con-
straints are used to limit relay node placements at some
pre-specified candidate locations only, meaning that the
proposed locations are not restricted to known sensor
node locations as in [3]. Their methods are more flex-
ible and practical in a real setting, but require that the
deployment algorithm a priori knows the deployment
constraints. This requirement cannot always be fulfilled.

The deployment strategies we present in this pa-
per (SPP and RMP) distinguishes from the before-
mentioned proposals since we allow any network topol-
ogy. Also, sink deployment constraints are not an input
parameter to the algorithms but are instead learned by
inspecting the link information.

III. SINK PLACEMENT ALGORITHMS

To effectively determine the optimal placement for
multiple sinks, network information must be gathered
globally or estimated. We distinguish the different
schemes in two categories: (i) those that require knowl-
edge about the geographical positions of all sensor
nodes (geo-aware); and (ii), those that rely on the
network topology (topology-aware). In the following,
we present four different sink deployment strategies,
two in each category. The first method is similar to
the one previously proposed by Oyman et al. [1]. It
also shares resemblance with the method proposed by
Vincze et al. [2]. The tree final methods are considered
novel to our paper.

A. K-means placement (KSP)

K-means is a classic and simple method for clus-
tering that has been applied to several problem do-
mains. When applied to sensor sink node placement,
the cluster memberships proposed by the algorithm is
ignored. K-means is simply used to find the cluster
centroids given a set N of n sensor nodes and their
geographical positions P = {p1, p2, . . . , pn}. In this
way, K-means can find the optimal set of sink locations
S∗ = {s1, s2, . . . , sk} given a predefined number of
sinks k. The method works as follows:

1) The preferred number of sinks k is predeter-
mined.

2) k points s1, . . . , sk are placed in the geographical
space bounded by the nodes being clustered,
P . These points represent the cluster centroids,

which will eventually constitute the sink loca-
tions.

3) Each sensor node is assigned to the cluster with
the closest (Euclidean) centroid s.

4) The k centroids are repositioned to the mass
center of each cluster.

5) Repeat steps 3-4 until the centroids no longer
move.

By iteratively minimizing the within-cluster sum of
squares, the final cluster centroids are found and chosen
as the optimal placement for the sinks:

S∗ = arg minS

∑k
i=1

∑
Nj∈Si

||pj − si||2
The prerequisite to run K-means sink placement

algorithm (KSP) is exact knowledge of each sensor
node location. The location information can be obtained
either by GPS positioning or by special localization
schemes [6], [7]. In any case, the location information
must be gathered from the sensor nodes to a central
entity running KSP. This can be done using a mobile
robot node or by temporarily installing one or more
static sinks at random locations in the network.

B. K-medoid placement (KDP)

K-medoid clustering is closely related to K-means
and is an excellent candidate algorithm for sink node lo-
calization. Instead of using cluster centroids, K-medoid
builds on the concept of medoids. A medoid is defined
as the most central object in a cluster. For our purpose,
this is an attractive feature, since the algorithm can find
the position of any k nodes in N that are most central
instead of proposing new sink locations. The method
therefore provide constrained placement, and our hy-
pothesis is therefore that K-medoid is a better candidate
for sink placement than K-means. Our K-medoid sink
placement is based on Partitioning Around Medoids
clustering (PAM), originally proposed by Kaufman and
Rousseeuw [8]. The method works as follows:

1) Randomly select k of the n nodes to represent the
initial medoids. The medoid positions will later
represent the sink locations.

2) Each node is associated with the closest (Eu-
clidean) medoid.

3) For each medoid m and non-medoid n, the pair
(m,n) is swapped and the configuration cost is
computed.

4) The configuration with the lowest cost is selected
and stored in M .

5) Repeat steps 2-4 until there is no change in the
medoid set.

The optimal sink locations are given by the positions
of the medoid nodes in M∗, found by:

M∗ = arg minM

∑n
i=1 mink

j=1||pi −mj ||



The above algorithm shares the same prerequisites
as mentioned above for KSP, since all individual node
locations must be known a priori.

C. Shortest path placement (SPP)

All multiple sink deployment strategies that require
location information suffer from the following short-
comings:

1) The geographical positions of the sensor nodes
must be known. To obtain the individual node
positions, a localization and collection scheme
must be present in the network.

2) Since the methods are based on Euclidean dis-
tance, the algorithms inherently assume that all
sensor nodes share the same transmission range
and that geographically adjacent nodes also are
1-hop neighbors. This is not always true in ob-
structed environments.

To overcome both these limitations, our Shortest Path
Placement algorithm (SPP) can instead of requiring the
geographical positions, take advantage of the network
topology information to determine the optimal sink
locations. By letting the sink placement algorithm take
advantage of the topology information directly, instead
of using the estimated node positions (which are impre-
cise and often derived from the topology anyway [6],
[7]), the overall system design is radically simplified.

Our SPP algorithm builds on KDP and differs mainly
in the distance measure employed. We model the net-
work as an undirected graph G represented as a tuple
G(V,E) where V is the set of vertices representing
the sensor nodes and E is the set of edges. Each
edge represent a bidirectional communication channel
between a pair of nodes i and j. We then construct an
adjacency matrix A, where aij = 1 if there is an edge
from vertex i to vertex j. If i = j, aij = 0. If there is no
edge between i and j, aij =∞. The all pairs shortest
path matrix D is then computed from A using Dijkstras
algorithm [9]. The shortest path distance between i and
j is defined as dij . This measure now constitute the
distance measure which replaces the Euclidian distance
measure used in the KDP algorithm introduced above
such that:
M∗ = arg minM

∑n
i=1 mink

j=1dij
The algorithm finds k nodes (sinks) in the network

that minimizes the average number of hops in respect
to the remaining nodes in the network. The prerequisite
to run SPP is that all links in the network are known
a priori. As for the before-mentioned algorithms, such
information can be gathered using a mobile node or
by temporarily installing one or more sinks in the
network. Notice that the collection of link information
is inherently performed in many routing protocols,

and this requirement is therefore easier to fulfill than
obtaining the exact node positions.

D. Routing Metric placement (RMP)

Wireless sensor networks are error prone in nature
and it is evident that poor link quality causes problems
for packet delivery and routing. Hence, there are nu-
merous works focusing on increasing the reliability by
using better routing metrics, e.g., ETX, ETT or LQI. We
provide an extension of the SPP algorithm that uses a
metric for each edge before performing the shortest path
calculation. The employed metric should preferably be
the same metric as the one used by the routing protocol.
The sink placement will then be optimized according
to the chosen routing metric instead of being optimized
to a separate (and often irrelevant) measure such as the
Euclidean distance between the nodes.

As a proof-of-concept we use the link quality esti-
mate (LQI) from 802.15.4 MAC layer to provide simple
constraint based routing. The idea is implemented such
that if the initial link quality estimate is below a certain
threshold value (i.e., due to environmental constraints or
path loss), we consider the link as weak. If the estimate
is above this value, the link is considered good. By
using this kind of routing constraint, the sink placement
algorithm can be used to select the k sink node locations
that maximize the overall link quality.

We extend the adjacency matrix A explained for
SPP such that link constraints can be included in
the calculations. This is implemented in the following
manner:

aij =


1 if link i, j exists;

1 + c if link i, j is weak;
0 if i = j;
∞ otherwise

(1)

The constant c is used to take account for links which
are considered weak. In our experiments, c = 0.5. The
all pairs shortest path matrix D is computed from A,
and inherently includes the link quality constraints. The
shortest path distance between i and i is defined as dij
and is used to find the sink locations as shown for SMP.
RMP in this way finds the k nodes in the network that
maximizes the average link quality. Placing the k sink
nodes at these locations will presumably lead to fewer
MAC retransmissions, fewer collisions and extended
network lifetime.

IV. ANYCAST ROUTING IN MULTIPLE SINK
NETWORKS

In multiple sink WSNs, the sensor nodes usually
transmits data to one arbitrary sink and do not partic-
ularly care which sink is used. In such an anycasting
paradigm, the routing protocol is responsible for trans-
mitting datagrams to at least one of the sinks that accept
datagrams with a certain anycast address.



For the purpose of the studies in this paper, we have
developed a tree based routing protocol. The protocol
establishes an anycast collection tree routed at the sinks.
All nodes transmit beacons indicating their distance to
the sink, whereas sink nodes report a distance of 0. The
protocol uses the link quality indicator (LQI) from the
physical layer in addition to the hop distance in the
routing decision. The LQI value of a link is measured
upon beacon reception. If the LQI value is below a
certain threshold value, the link is considered weak. The
route cost then becomes a combination of the number
of hops NH and the number of weak links NW . A
route a is said to be better than route b if NW (a) <
NW (b) or NW (a) = NW (b) and NH(a) ≤ NH(b).
Thus, a data packet will follow the path that minimizes
both the number of hops and the number of weak links
between a node and a sink.

V. ONE-SINK PLACEMENT

(a) S1 (b) S2 (c) S3 (d) S4

Figure 1. The four scenarios used in the simulations

To obtain valuable understanding of the differences
between our proposed deployment algorithms, we first
study networks containing just one sink (k = 1). As
a point of comparison for sink placement we use a
simple center placement strategy. The strategy merely
places the sink at the center of the area. Should the
center position be blocked by an obstruction (i.e., wall
or building), the sink is located at the nearest non-
obstructed position. In this way, the model is supposed
to mimic deployment as if performed by a physical
network operator or a robot.

To ensure that our results are not biased by our
selection of a particular network layout, we consider
four different network scenarios as shown in Fig. 1.
The first scenario represents an open area with no ob-
structions. The second scenario represents the same area
but with a large obstruction (building). More buildings
are added in the third scenario. The fourth scenario
is an indoor office area. In all scenarios, we define
that signals communicated through walls and buildings
observe a different radio propagation condition than
signal communication line-of-sight through open air.
We use the ShadowingVis propagation model in ns-2.34
to model this behavior in the simulated areas.

For all scenarios, each sensor node transmits a 50-
byte sensor reading packet each 100s addressed to

the sink anycast address. The readings are transmitted
during the entire lifetime of the network. We define
the network lifetime as the point in time when the
first sensor node runs out of energy. The simulation
parameters, including the transmission and reception
energy usage, are given in Table I. For simplicity we
assume that the energy consumption during idle periods
is negligible. All parameters are kept equal for the
different deployment strategies, meaning that the only
variable affecting the simulation results is the actual
choice of sink deployment strategy. Initially, we place
two sinks at two random locations. These sinks are used
to collect neighbor information and link quality esti-
mates, which are subsequently used in the calculations.
For KSP and KDP, we assume that the geographical
positions of the nodes are exact and known a priori.

Table I
SIMULATION PARAMETERS

Simulator NS-2.34
Propagation model ShadowingVis
pathlossExp 1.5/4.0 (Open/Obstructed)
std db 2.0/1.9
dist0 1.0/1.0
Number of nodes 100
Number of random topologies 10
Area 125m x 125m (S1-S3)

32m x 32m (S4)
MAC protocol IEEE 802.15.4
Frequency 2.4 GHz
CSTresh 1.20174e-07
RXThresh 1.20174e-07
RXpower 35.28mW
TXpower 31.32mW
Initial Energy 1.0 Joule
Traffic parameters CBR 50 bytes
Data rate 1pkt/100s/node

A. Results and analysis

Figure 2 show the lifetime for all scenarios and
for all sink deployment algorithms. We observe that
for scenario 1, the difference in lifetime is minimal
between the five methods. This is expected considered
that S1 represent a non-obstructed area, and with a
reasonably high network density. For the scenarios
2 − 4, we observe that the topology aware algorithms
give remarkable lifetime improvements compared to
both the geo-aware algorithms and the naı̈ve center
placement strategy. By concurrently studying Figure 2
and Figure 3, we observe that system lifetime relates
to the average number of transmissions required to
successfully transmit a packet from a source to the sink.
This gives an insight of the quality of the links selected.
Retransmissions due to packet loss cause more energy
to be used on transmitting and receiving messages,
which in turn reduces the system lifetime.
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Figure 3. Average cost per sensor message

Figure 4 show the total number of sensor messages
received at the sink (goodput) during the lifetime of
the network. The figure in this way show the effective
work performed by the sensor network during its system
lifetime. KSP shows reduced performance for some
topologies. This phenomenon is caused by the fact that
the KSP strategy can propose sink locations in connec-
tion holes (no neighbors), or on top of obstructions. We
did not reposition the sink to a better location in these
cases. Center placement is therefore somewhat better,
since obstructions are avoided in this model. However,
there is still no guarantee that connection holes are
avoided, and Center therefore has a lower average
performance than the best deployment strategies.
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Figure 4. Total number of sensor messages received at the sink

Figure 5 show the percentage of nodes communi-
cating with the sink during the system lifetime. This
result gives a picture of how well the sink placement
matches the network topology. Since all sensor nodes
are randomly deployed within the open area, a small

percentage of isolated nodes are expected regardless
of the sink deployment procedure. However, the figure
shows that an intelligent sink deployment procedure
can minimize the number of isolated nodes. Again,
we observe that the topology-aware strategies performs
better that the other strategies.
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Figure 5. Percentage of nodes able to communicate with the sink

B. Summary

The following conclusions can be drawn from the
above results:
• The network environment plays a huge part of

the picture when comparing the performance of
the schemes. When using a simple scenario (S1),
all schemes give comparable results. However,
in more complex environments which includes
obstructions, SPP and RMP gives the longest life-
time, the highest number of packets received, and
the lowest number of isolated nodes.

• RMP is the best choice when the network is sparse
and there is a high number of low quality links in
the network (i.e., many obstructions, as in S3).
In a dense network (S4) and in a network with
fewer obstructions (S2), SPP is the best choice.
We anticipate that RMP may perform better under
all network conditions if a more advanced network
metric is used.

• We observe that even the simplest mechanism
performs well under unconstrained and ideal con-
ditions such as S1, while it performs poorly in ob-
structed environments. This result leads to the con-
clusion that previous sink deployment mechanisms
only validated in simple simulation scenarios may
be of little use in real world implementations.

VI. MULTIPLE SINK PLACEMENT

We now study the multi-sink problem and analyze
the influence of increasing the number of sinks on
the lifetime and total number of packets received.
For the multi-sink case, we assume that the system
does not particularly care which sink each sensor node
uses as long as the lifetime is elongated and that the
network load is balanced. We also assume that the sinks



are either connected through a fixed network, or are
manually collected by a network operator or robot after
a certain period of time.

As the Center algorithm performed poorly for k = 1
and is difficult to apply for k > 1, we only consider
the strategies KSP, KDP, SPP, and RMP. Also, we focus
on scenario 3 only, since this scenario gave the results
with the widest diversity for the different strategies
in the one-sink case. We now investigate whether the
difference between the strategies is consistent also when
k increases. We apply the same simulation methods as
described in Section V.
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Figure 6 show the network lifetime related to the
number of sinks for the different deployment strategies.
We observe that the network lifetime first increases
almost proportionally to the number of sinks, which
is expected since the average path length decreases. It
is also interestingly to see that the lifetime difference
between the strategies observed for the one-sink case
is sustained also when the number of sinks increases.
This proves that it is extremely important to find the
optimal sink placement even in the multi-sink case. It
is, however, obvious that when a very high number
of sinks is available (in this case k � 5), the choice
of deployment strategy eventually becomes irrelevant.
As in the one-sink case, we observe that the topology
aware algorithms give remarkable lifetime improve-
ments compared with the geo-aware algorithms. RMP
increases the lifetime with 60% for k = 2, and 25% for
k = 3 compared to KSP. In fact, two sinks deployed
with SPP or RMP gives significantly longer lifetime
than tree sinks deployed with KSP.

To get the full picture of how important it is to place
the sinks wisely, Figure 6 must be seen in relation with
Figure 7. Figure 7 shows the number of successfully
received sensor readings at the sinks (goodput) during
the system lifetime. We observe that with the topology-
aware methods, SPP and RMP, the number of messages
received during the system lifetime is significantly
increased compared to the geo-aware methods, KSP and
KDP.
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VII. CONCLUSIONS

In this paper, we have shown that deploying multi-
ple sinks in WSNs offers a tremendous potential for
improving both the lifetime and goodput. Most related
work in the literature only considers unconstrained sink
deployment mechanisms. Extensive simulation results
show that such methods are insufficient since even
the simplest deployment mechanisms performs well
under unconstrained and ideal conditions, while they
perform poorly in constrained environments. The results
show that a constraint-based deployment algorithm is
paramount to get the full potential of multiple sink
WSNs.
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