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Abstract—We propose evolutionary computation to estimate
positions of nodes within a sensor network. The approach uses
signal strength measurements between nodes and given positions
for a subset of these nodes (anchor nodes). The signal strength
measurements and routing requests take place simultaneously. A
data collecting unit (sink node) receives distance estimates which
are input to the evolutionary algorithm projecting node positions.
This evolutionary approach can sort out data outliers and hence
produce robust estimates of node positions. The present work
contributes to decrease the cost and complexity of applying
sensor networks. The approach also provides redundancy for
the node positioning where alternative methods fail. The present
simulations show examples of network generation and routing
combined with estimation of node positions.

Index Terms—Sensor Networks, Localization, Evolutionary
Algorithm, DYMO-low

I. INTRODUCTION

This work argues for evolutionary computation for localiza-
tion within wireless sensor networks (WSNs). The approach
provides low cost and robust localization utilizing signal
strength measurements attached to routing control packets.
A genetic algorithm [1] here searches for possible sets of
node positions explaining these measurements. This search
resembles the process of natural evolution.

Wireless sensor networks can consist of hundreds or even
thousands of small sensing devices. Location awareness is cru-
cial for many WSN applications such as environment monitor-
ing and military surveillance. Sensor networks can also utilize
location information for routing, cooperative computation, data
fusion and location dependent sensor data requests [2], [3],
[4], [5]. GPS positioning for every sensor node is not a general
solution to localize nodes in sensor networks. It may be costly
and impractical and sometimes irrelevant. Development of
a precise, low-cost, reliable and fast converging localization
scheme is therefore essential for the function of many sensor
networks.

A. Related work
Localization schemes for sensor networks can be catego-

rized depending on ranging, hardware, mobility, centralization
and deployment restrictions. These will be briefly discussed
here. Range-independent localization schemes [6], [7] deter-
mine node positions without using any special measurements.
Localization is in this case a result of connectivity information.
Even if low cost hardware can provide this capability, the po-
sition estimates are imprecise, especially for sparse networks.

Additional information can improve the position estimates.
Such additional information can be from measurements of
distance or direction to known reference positions. These
estimates are typically from measurements of time of arrival
(TOA), time difference of arrival (TDOA), angle of arrival
(AOA) or received signal strength indicator (RSSI). Examples
of hardware for this type of measurements are ultrasound
devices [8], angle-of-arrival antenna arrays [9] or laser [10].
However, introducing such additional hardware increases cost
and complexity of sensor network systems.

The deployment method of sensor networks often deter-
mines the choice of its localization scheme. Mobile nodes can
sometimes aid localization of individual sensor nodes [11],
[12]. In such cases a vehicle, robot, or soldier enters the
sensor field to assist the localization scheme. Sensor drop from
airplanes, on the contrary, requires autonomous localization.
Centralized methods may then be the only viable approach.
Previous assumptions indicate that centralized methods are
impractical due to high communication costs. Our proposal
argues against this conclusion.

There are many previous attempts to estimate node posi-
tions in sensor networks using centralized search techniques.
Kannan et al. [13], for example, creates an initial estimate
of positions by applying simulated annealing and attempts to
correct possible misplaced nodes thereafter. Tam et al. [14]
apply evolutionary optimization to improve position estimates
after initial triangulation, while Zhang et al. [15] more directly
apply evolutionary computing for localization.

B. Our contribution

Most existing sensor network platforms can use signal
strength measurements without additional hardware by em-
ploying RSSI from the IEEE 802.15.4 chipset. Our proposal
takes advantage of such low-cost measurements to estimate
node positions. However, other and more precise measure-
ments (such as acoustic ranging) can be utilized if this is
supported by the hardware. The proposal includes a preva-
lent WSN ad hoc routing protocol, DYMO-low [16] that is
exploited to fetch and distribute RSSI values. By combining
route establishment and localization our approach contributes
in reducing the effort and complexity of sensor network
deployments. The sink employs an evolutionary approach to
provide estimation of node positions using the information
gathered. This gives a reasonable robust solution even for



poor signal strength measurements. Our implementation of
an evolutionary algorithm is simple and intuitive and relaxes
the search space as compared to similar work [14], [15].
Section III below clarifies this relaxation via variation of
fitness measures and allowing for data outliers.

The remainder of this paper is organized as follows. Section
II describes collection and distribution of RSSI measurements
using DYMO-low. Section III elaborates the evolutionary
localization algorithm. Section IV presents simulations results
and analysis. Section V gives concluding remarks.

II. SIMULTANEOUS ROUTING AND RSSI MEASUREMENT

The support of RSSI measurements is common in prevalent
IEEE 802.15.4 implementations. But signal strength measure-
ments, especially indoors, may provide imprecise distance
estimates due to multipath propagation, reflection and channel
fading. RSSI measurements are therefore mainly ignored for
node positioning within sensor networks. However, recent
research by Holland et al. [17] shows that RSSI measurements
on sensor nodes strongly correlate with distance. RSSI mea-
surements on a link are also symmetric [18] and localization
schemes for small-scale networks can utilize this property [19].

Our scheme extends this work by using RSSI to aid lo-
calization in medium to large-scale multihop networks. We
have chosen a centralized approach to localization, mean-
ing that only the sink is involved in computation of the
node positions. It is worth noting that distributed protocol
designs are traditionally preferred before centralized designs
in networking systems due to the fault tolerance and lack
of scalability of the latter approach. However, we argue that
in most WSNs, the sink node is already a single point of
failure, and the fault tolerance is not increased by centralizing
the localization algorithm. In fact, it simplifies the protocol
design and its implementation. Further, the scalability of the
centralized algorithm is not a big concern compared to a
distributed design, as the sink node can be equipped with
several orders of magnitude more memory and CPU than the
sensor nodes.

The approach in this paper exploits route establishment
to perform measurements and transport RSSI values to the
sink by extending the reactive distance vector routing protocol
DYMO-low [16]. DYMO-low is intended for use on IEEE
802.15.4 devices and is based on the principle of flooding
route requests (RREQ) and unicasting route replies (RREP) as
known from AODV [20] and DYMO [21]. Our extension intro-
duces two new messages to the protocol, Localization Route
Request (LRREQ) and Localization Route Reply (LRREP).
Fig. 1 illustrates the protocol operation consisting of a request
phase and a reply phase.

A. Request phase

The sink initiates the network by announcing its address
via a Localization Route Request (LRREQ). This message
can be seen as a proactive route request destined to all nodes
in the network. The LRREQ is flooded similarly as a regular
DYMO-low routing request (RREQ). The nodes which receive

LRREQ (RSSI is measured) 

LRREP with neighbor info

Fig. 1. Initialization of sensor network with anchor nodes (red). The sink S
(blue) starts route discovery. All nodes collect RSSI measurements from their
neighbors while the LRREQ disseminates. They report their measurements as
attachments to their individual route reply back to the sink. Anchor nodes
also report their positions. The sink then estimates node positions using
evolutionary computation.

the LRREQ, retransmit the packet only once. This means that
all nodes will receive a copy of the LRREQ from each of
its neighbors (cf Fig. 1). When a node receives a LRREQ
packet, it performs a RSSI measurement and subsequently
stores its value and the address of the sender. As the LRREQ
disseminates from the sink to the entire network, all nodes will
eventually obtain a distance estimate to each of its one-hop
neighbors with no more cost than a regular Route Request.

B. Reply phase

A node will, after receiving a packet, respond back to the
sink using a LRREP (Localization Route Reply). This trans-
mission takes place after a random time delay to avoid network
congestion and collisions. Fig. 1 illustrates this process. The
response message extends the regular Route Reply defined in
DYMO-low, with a list of the one-hop neighbors and their
correspondent RSSI measurement values. Anchor nodes will
also add their own present position that can be from a GPS
receiver. The sink will eventually receive LRREPs from all the
sensor nodes in the network. It will then use this information
to estimate the individual locations.

Note that the sink receives two RSSI measurement values
for each link in the network (one from each link end). The
distance estimation applies the mean of the values from each
link. The duplicated information also enables reconstruction of
missing LRREP information. If the LRREP from for example
node a in Fig. 1 is lost on its way to the sink due to congestion
or collision, the sink can use the LRREPs from the surrounding
neighbors of a to estimate its location. This gives a minimum
level of redundancy.

C. Features and considerations

The above approach provides two important additional
features.



i) After a complete request/reply phase, all nodes in the
network has a valid route to the sink, making them ready to
perform their sensing task immediately. Notice that if standard
DYMO-low is used, route requests must be initiated from
each node in the network to accomplish this. This could
cause tremendous overhead due to the flooded route requests.
Our approach, on the contrary, limits this to just one sink-
initiated route request and considerably reduces the number
of messages flooded in the network.

ii) By using the information provided in the LRREPs, the
network operator at the sink will know which of the nodes in
the network are fully functional, within range and operating.
It could later be useful to add other sensor information to
the LRREP message in order to inform the sink that the
individual sensors on each node are operating satisfactorily
after deployment.

The size of the LRREP may end up being too large for a
IEEE 802.15.4 frame if i) a node has a very large number
of one-hop neighbors, or ii) the LRREP includes much status
information from the sensors on the node, or iii) a combination
of the two. The LRREP will still be transmitted, as the
6LoWPAN sublayer [22] elegantly fragments and reassembles
datagrams being larger than a MAC-frame. However, in sparse
and medium density networks fragmentation of the LRREP are
not likely to occur.

III. LOCALIZATION THROUGH EVOLUTIONARY
COMPUTATION

This section describes our centralized evolutionary compu-
tation method to estimate node positions within the sensor
network. Evolutionary approaches generally provide capacities
for searching through large sets of possible explanations of
given data. For our purpose, such techniques are therefore
particularly interesting for estimation of node positions from
error-prone data, such as signal strength measurements.

Parameter estimation is often equivalent to model identi-
fication from data. A set of parameter values then typically
defines a model within for example a physical setting. The
actual set of parameters is in our case the (unknown) set of
sensor node positions, and the data is the distance estimates
from the RSSI measurements.

Given a set I = {N1,N2, . . . ,NK} of K nodes and
estimates (measurements) of the distance between them. If
the distance between two nodes is within a common detection
range r, the estimate is assumed to be a result from measure-
ments (explicit detection). Otherwise, the estimate only tells
that the distance between them is larger than r (i.e. missing
data defaults to an implicit imprecise distance estimate larger
than r). Our algorithm utilizes information inherent in missing
or negative observations.

For i = 1, . . . ,K, let the real position vector ri denote an
initially proposed location for the node Ni. These positions
can be restricted to for example a rectangular (test) area
covering the whole sensor network. The present simulations
are for a rectangular test area of size (100 × 50 m2). Some

nodes acting as anchor points have known location, while the
position vectors for the other nodes are random.

Anchor nodes with known positions give the possibility to
estimate all node positions from internode distance data. The
positions ri, i = 1, . . . ,K, constitute a proposal explaining the
inter-node signal strength data. They also constitute ”genes”
in the present setting. The algorithm generates a population
P of L = 1000 such proposals for node positions. A fitness
measure mf quantifies how well each proposal (individual) in
P fits to the measurement data. The fitness measure provides
a linear ordering in the population defining for each individual
its probability for producing offspring.

The algorithm generates an offspring by randomly selecting
two individuals (parents) in the population P . The position
ri of node Ni for the offspring is then a copy of the
corresponding position for one of the parents with equal (50-
50) probability. A random mutation with probability 0.02
takes place as a random displacement ∆r relative to this
position. A mutation may be small or large. In our example
simulations we apply three types of mutations in alternating
sequence during the generations of the evolutionary process.
One type of mutations are large mutations ∆r with a uni-
form distribution over set [−100, 100] × [−50, 50] m2 (i.e.
∆r ∈ [−100, 100] × [−50, 50]). The two other types of
mutations are similarly for ∆r ∈ [−10, 10] × [−5, 5]) and
∆r ∈ [−1, 1]× [−0.5, 0.5]). Mutations only take place if they
result in a new position inside the rectangular test area in
which the sensor network is known to be.

The evolutionary process takes place in cycles where a
number of S = 100 of the best fit individuals survive
through elitism and the remaining L − S = 900 exits the
population. For each cycle, 900 new individuals are created.
The new population of L = 1000 proposals constitute the new
generation.

Let oi,j denote the estimate of the distance between the
nodes Ni and Nj (i, j = 1, 2, . . . ,K). The statement oi,j > r
is equivalent to no available data despite of good attempts to
detect. Assume

si,j
def
= |ri − rj | (1)

is the distance derived from the model sensor network I ∈ P .
A possible fitness measure mp

f (I) for an individual I ∈ P
can here be a power sum of the differences between observed
distances and the distances according to I:

mp
f

def
=

K∑
i,j=1

dpi,j (2)

where

dpi,j =

 |si,j − oi,j |p if si,j ≤ r and oi,j ≤ r ;
0 if di,j > r and oi,j > r ;
|2r|p otherwise

(3)

The algorithm applies the fitness measure mp
f for p = 1, 2.

Variation of the fitness measure mf during the evolutionary
process extends the search space making the evolution less
likely to stagnate at local optima.



Note that the evolutionary method above extends the search
space proposed by Zhang et al. [15] which restricts possible
node positions to conform to observed neighborhoods.

Evolutionary computation may function in a setting with
frequent occurrence of data outliers. The above approach is
directly extendable so it can perform combined analysis of
spatially related sensor data and sensor positioning. This can
extend the application space to for example data transmission
ranges shorter than otherwise applicable for sensor node
positioning. Note that an evolutionary approach also has pos-
sible parallel implementations. This gives the opportunity to
distribute computational load available in the sensor network.

IV. TEST AND EVALUATION

The most challenging scenario for a localization scheme
is when the nodes are randomly deployed, such as during
an airdrop. The example scenarios below are therefore for
such situations. In randomly deployed networks, the network
degree defines whether the nodes are uniquely localizable
or not. The routing scheme is also sensitive to the degree
of network connectivity. These aspects are studied in the
following simulations.

Two randomly deployed scenarios illustrate the evolutionary
localization algorithm. The first scenario is for ideal RSSI
measurement conditions (zero measurement error). The second
scenario is for more realistic RSSI measurement errors and
inaccuracies found using present implementations of IEEE
802.15.4.

A. Network impact

As no simulator implementation of DYMO-low was public
available, we implemented the Internet Draft in the NS-2.34
network simulator [23]. Then the proposed extensions to the
protocol were added to enable measurement and distribution
of signal strength.

In the simulations, the packet overhead involved in per-
forming a complete routing and localization process was
studied. The routing scheme was evaluated under the effect
of network density and node population. The setup used the
IEEE 802.15.4 MAC layer and 20 different random simulation
topologies were run for each setup.

1) Localizable nodes: The fraction of localizable nodes was
examined for different network densities. Given the area A, the
number of nodes K and the radio range r, then the average
number of possible neighbors d is defined by the average
number of nodes within the area ((πr2K)/A). This measure
does not account for area edge effects. A node at a corner of a
rectangular area will only have an average of d/4 neighbors. A
density d of 5 here represents a sparse network and a density
of 20 a dense network. For each density simulated, the number
of nodes K was varied between 50 and 200. The results are
shown in Fig. 2.

In a sparse network (d = 5) only 70% of the nodes could be
localized by the sink, meaning that 30% of the network was
partitioned. When d = 7, more than 90% of the nodes could
be localized. This increased to about 100% when d = 20.

Fig. 2. Fraction of nodes localizable for different network densities. Red bars
show theoretical fraction of nodes in the network reachable by the sink node.
Green bars show fraction of nodes reachable using incoming LRREPs. Blue
bars show fraction of nodes reachable by reconstructing missing LRREPs.

Fig. 3. Number of transmitted packets as a function of network size (number
of nodes) for complete route discovery including RSSI-measurement. The
average number of neighbors varies between 5–20. The 95% confidence
interval included.

A small number of route replies (LRREPs) was lost due to
collisions or congestion in the network. This caused the actual
number of localizable nodes to be lower than the theoretic,
as shown in the green bars. The protocol was however, able
to reconstruct 60–70% of this lost information thanks to the
redundant information in other LRREPs.

2) Network overhead: Fig. 3 shows the total number of
packets transmitted to obtain RSSI measurements and route
discovery in randomly deployed networks. The number of
packets increased with increasing number of nodes. It also
increased with lower density due to more hops between an
arbitrary node and the sink.

Fig. 4 represents the same network topologies as for Fig.
3 while quantifying data transport in terms of number of
bytes instead of number of packets. The total number of bytes



Fig. 4. Number of transmitted bytes as a function of network size (number
of nodes) for complete route discovery including RSSI-measurement. The
average number of neighbors varies between 5–20. The 95% confidence
interval included.

transmitted was approximately constant for a given number of
nodes regardless of the density. There is in this way a balance
between a tendency for increased traffic due to decreased
number of hops and an increase due to larger data packets
caused by more one-hop neighbors.

The scheme seems to scale well and we state that the data
requirement to run the scheme is within the limits of IEEE
802.15.4.

B. Localization performance and accuracy

Real position
Estimate

Anchor

Fig. 5. Result from numerical experiment with 50 nodes including 5 anchor
nodes and no measurement errors.

A separate and simple Ada program implemented the pro-
posed evolutionary algorithm. The algorithm was evaluated
under the effect of RSSI measurement quality.

As identified in Fig. 2, randomly deployed nodes require a
high node density to avoid network partitioning. Therefore we
have considered an initial setup consisting of 50 nodes within
a 100 × 50 m2 rectangular area and with transmission range
r = 30 m. Fig. 5 is for a simulation with ideal measurements

(no measurement errors). The average position error is in
this case within 0.5 m. However, this error is an artificial
effect by the model since candidate solutions (individuals) in
the evolutionary process can be subject to fine tuning with
arbitrary small mutations. Note that the scenario cannot be
considered realistic unless the conditions are ideal or a more
exact measure than RSSI is employed. Fig. 6 illustrates a
typical generational development of the fitness mp

f (I) for the
most fit individual I in the population in this scenario. The
fitness measure mp

f did here drive the evolutionary process
where the value of p changed between 1 and 2 for each 5
generation.

Fig. 7 shows results from a simulation with significant
measurement errors possessing a uniform distribution around
the real distance ±10 percent. Solid black lines here illustrate
data outliers which are 50 percent less than the real distance.
Such measurement errors are here similar to real sensor nodes
[17]. The final position estimates show small errors (average
less than 1 m).

The performance of the evolutionary algorithm is sensitive
to reduction of the transmission range r or the network degree
(or node density) and the spatial distribution of the anchor
nodes.

Fig. 6. A typical generational development of fitness by the evolutionary
algorithm.

C. Summary

We have contributed to the discussion of applying evolution-
ary computation to estimate positions of nodes. Evolutionary
computation seems to provide simple solutions to complex
data fusion tasks. Our example simulations indicate that cur-
rent hardware and standards may provide possible pioneering
attempts in this direction. The provided simulation results
also show that the data requirement to run the localization
scheme is well within the limits of IEEE 802.15.4, meaning
that centralized localization is feasible.
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Fig. 7. Result from numerical experiment with 50 nodes including 5 anchor
nodes. The error has in this case an uniform distribution around the distance
±10 percent. Solid black lines illustrate data outliers which are 50 percent
less than the real distance.

V. CONCLUSION

We argue that both the ranging measurements, the measure-
ment data gathering and the localization algorithm are essential
in providing a complete localization system solution. In this
paper a scheme including all those components is presented.
The proposed localization scheme is based on centralized
evolutionary computing and employs the route establishment
phase of DYMO-low to fetch and distribute signal strength
values.

We conclude by emphasizing the flexibility in the scheme
presented in this paper. The proposed extension to the DYMO-
low protocol can potentially be used to facilitate other central-
ized localization algorithms than the evolutionary computation
algorithm proposed here. Likewise, the evolutionary algorithm
can take advantage of information gathered using a link state
routing protocol, such as OLSR [24]. Further, the evolutionary
algorithm can benefit from more precise ranging methods such
as acoustic ranging. This makes our contributions versatile and
attractive to a wide range of WSN applications.
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