

UNIVERSITY OF OSLO
Department of informatics

Service Discovery in
Mobile Ad-hoc Networks

Master thesis

Joakim Flathagen

November 1st 2008

Abstract

Automatic discovery of services and resources is a crucial feature to achieve the expected user-
friendliness in Mobile Ad-hoc Networks (MANETs). Due to limited computing power, scarce
bandwidth, high mobility and the lack of a central coordinating entity, service discovery in these
networks is a challenging task.

In this thesis, I have developed a service discovery protocol (Mercury) utilizing a combination
of different optimization techniques: The performance is increased using cross-layer interaction
between the application layer and the routing layer. The service information is described using
Bloom filters and distributed using Optimized Link State Routing (OLSR). A caching scheme
is implemented to obtain further reductions of both overhead and latency.

The analysis and simulation results show that the service discovery proposal induces very low
overhead to OLSR and is superior to application-layer solutions. The proposal is implemented
as a plugin to the OLSR implementation olsrd for real-world deployments.

i

ii

Preface

This thesis is written as a part of my Master degree in Computer Science at the University of
Oslo, Faculty of Mathematics and Natural Sciences, Department of Informatics. The thesis is
written at UniK (University Graduate Center) and at Norwegian Defence Research Establish-
ment (FFI).

Acknowledgments

I wish to thank my supervisors Knut Øvsthus, Øivind Kure and Josef Noll for their guidance. I
will also thank fellow M.Sc. and Ph.D. students at UniK and University of Oslo. I wish you all
good luck in graduating.

Special thanks to my project managers at FFI, Rune Lausund and Lars Erik Olsen, for giving
me the possibility to work on this thesis. Additionally, I would like to convey thanks to all my
colleagues at FFI for your interest and encouraging remarks during the work. Special thanks to
Stig Asle Synnes for sharing your math knowledge and Michelle Swearingen for your english
lessons.

It would take another thesis to express my thanks to Elin Sundby Boysen.

Joakim Flathagen
November 1st 2008

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Overview . 2

1.2.1 Mobile devices . 2

1.2.2 Mobile networks . 2

1.2.3 Services . 3

1.3 Problem statement . 3

1.4 Thesis layout . 4

2 Background 5

2.1 Mobile Ad-hoc Networks . 5

2.1.1 Reactive routing . 6

2.1.2 Proactive routing . 6

2.2 Service discovery . 8

2.2.1 Architectures . 8

2.2.2 Discovery Mode . 10

2.2.3 Descriptor options . 10

2.2.4 Service discovery standards and proposals 11

2.2.5 Evaluation . 14

3 Related research 15

3.1 Introduction . 15

3.2 Application-layer service discovery . 16

3.2.1 Pervasive Discovery Protocol . 17

v

3.2.2 Konark . 17

3.2.3 SLPManet . 17

3.2.4 Sailhan . 18

3.3 Cross-Layer service discovery . 18

3.3.1 Reactively Routed MANETs . 19

3.3.2 Proactively Routed MANETs . 20

3.4 Summary . 20

4 Mercury - A cross-layer service discovery protocol 23

4.1 The design . 23

4.2 Service description by Bloom filters . 24

4.2.1 Introduction . 25

4.2.2 False positive calculation . 25

4.2.3 The Mercury Bloom filter . 26

4.2.4 Summary . 27

4.3 Protocol Format . 28

4.4 The discovery scheme . 29

4.4.1 Sending service advertisements . 30

4.4.2 Sending service requests . 30

4.4.3 Receiving service advertisements . 31

4.4.4 Receiving service requests . 31

4.5 Additional features . 31

4.5.1 Path-aware caching . 31

4.5.2 Service handover . 32

4.6 Summary . 34

5 Evaluation methods 35

5.1 Introduction . 35

5.1.1 Analytical modeling . 36

5.1.2 Simulation . 36

5.1.3 Emulation . 36

5.1.4 Real-world experiments . 37

vi

5.2 Summary of evaluation methods . 37

5.3 Evaluation techniques for service discovery 38

5.4 Evaluation of Mercury . 38

6 Implementation for ns-2 39

6.1 The ns-2 network simulator . 39

6.1.1 Introduction . 39

6.1.2 Functionality . 40

6.2 UM-OLSR . 40

6.2.1 Introduction . 40

6.2.2 Functionality . 41

6.3 Service Discovery Implementation . 41

6.3.1 Protocol format . 42

6.3.2 Repositories . 43

6.3.3 Service functions . 43

6.4 Example simulation . 44

6.4.1 Configuring Mercury . 44

6.4.2 Define topology . 44

6.4.3 Define service access . 45

6.4.4 Running the simulation . 45

6.4.5 Examining the trace file . 45

6.5 Summary . 47

7 Implementation for olsrd 49

7.1 Overview . 49

7.2 The UniK olsrd daemon . 49

7.2.1 Core functionality . 50

7.2.2 Configuration . 51

7.3 Olsrd plugins . 51

7.4 Service Discovery as a plugin to olsrd . 53

7.4.1 Implementation overview . 54

7.4.2 Plugin architecture . 54

vii

7.4.3 Repositories . 55

7.4.4 Packet parser . 57

7.4.5 Service access functions . 58

7.4.6 Inter-process communication . 59

7.4.7 Summary . 61

8 Simulation methods 63

8.1 Performing valid measurements . 63

8.2 Obtain a realistic dynamic topology . 64

8.2.1 Comparing synthetic mobility models and real-world traces 65

8.2.2 Scenario description . 66

8.2.3 Traffic distribution . 67

8.2.4 Node distribution . 68

8.2.5 Delay . 69

8.2.6 Conclusions . 69

8.3 Scenarios used in this thesis . 70

8.3.1 Static scenarios . 71

8.3.2 Dynamic scenarios . 71

9 Simulations 73

9.1 Introduction . 73

9.2 False positive probability of the Bloom Filter 74

9.2.1 Description . 74

9.2.2 Results . 74

9.2.3 Conclusions . 75

9.3 Path-aware algorithm . 75

9.3.1 Description . 76

9.3.2 Results . 76

9.3.3 Conclusions . 78

9.4 Comparing Mercury with existing application layer protocols 78

9.4.1 Measuring overhead . 79

9.4.2 Measuring delay . 79

viii

9.4.3 Conclusions . 81

9.5 Comparison of real-world and simulated environment 82

9.5.1 Description . 82

9.5.2 Results . 82

9.5.3 Conclusions . 83

9.6 Performance using real tracks . 84

9.6.1 Description . 84

9.6.2 Results . 85

9.6.3 Conclusions . 86

10 Conclusion 87

10.1 Major contributions in the thesis . 87

10.2 Summary of results . 88

10.3 Future work . 89

10.3.1 Simulations and tests . 89

10.3.2 Implementation . 89

10.3.3 Performance optimization . 90

10.3.4 Interoperability . 90

10.4 Conclusion . 90

10.4.1 Final remarks . 90

Appendices 91

A Bloom Filters 93

A.1 False positive calculation . 93

A.2 The optimal number of hash functions . 94

A.3 Finding the optimal parameters . 95

A.4 MD5 in Bloom filters . 95

B Simple simulation example 97

C A real-world test: Discovery of SIP User Agents 101

C.1 SIP . 101

ix

C.1.1 Introduction . 101

C.1.2 SIP in MANETs . 101

C.2 Code extension . 102

C.2.1 Connect to the plugin . 102

C.2.2 Advertise the SIP service . 103

C.2.3 Request SIP services . 103

C.2.4 Parse the plugin output . 103

C.3 Summary . 104

D Tools 105

E Publications 107

E.1 Web Services and Service Discovery . 107

E.2 Service Discovery using OLSR and Bloom Filters 107

List of Acronyms 113

Bibliography 115

x

List of Figures

1.1 The purpose of service discovery. 3

2.1 Flooding in a multihop network . 7

2.2 Three different service discovery architectures 8

2.3 Different service discovery modes . 10

2.4 Different service descriptor options . 11

3.1 Service discovery at which layer? . 16

3.2 Using service discovery at the application level 17

3.3 Cross-layer service discovery . 19

3.4 Cross-layer OLSR based service discovery 21

4.1 Mercury in the middle . 24

4.2 Bloom filter functionality. 25

4.3 OLSR packet format . 28

4.4 Mercury service discovery format . 29

4.5 Mercury repositories . 30

4.6 Service handover . 32

5.1 Different evaluation methods . 37

6.1 The main components of the ns-2 network simulator. 40

6.2 UM-OLSR and Mercury . 42

6.3 Service discovery accessible for ns-2 scripts. 43

6.4 A simple OLSR network . 44

7.1 OLSRd basic functionality . 50

xi

7.2 OLSRd plugins . 52

7.3 The main building blocks of the Mercury Service Discovery Plugin 55

7.4 A two-way circular linked list . 56

7.5 Indexing two-way circular linked lists . 56

7.6 Several applications can connect to the plugin 59

8.1 Nodes following Random Waypoint Mobility Model 65

8.2 Nodes following real position tracks . 66

8.3 Traffic distribution . 68

8.4 Average number of accessible neighbors. 69

8.5 Average number of all accessible nodes . 70

8.6 Average delay for one hop . 71

8.7 Average end-to-end delay . 72

9.1 False positive probability of a 128-bit Bloom filter 75

9.2 False positive probability caused by caching - dense 76

9.3 False positive probability caused by caching - sparse 77

9.4 Static model to measure overhead . 79

9.5 Overhead using Mercury compared with SLP and PDP. 80

9.6 Static model used to measure the service discovery delay.. 80

9.7 Service discovery delay without caching. 81

9.8 Service discovery delay with caching . 82

9.9 Simulation vs real-world . 83

9.10 Overhead in real-track simulation . 84

9.11 Delay in real-track simulation . 85

A.1 False positive probability . 94

C.1 Find the location of SIP agents . 102

C.2 The SIP application. 103

xii

List of Tables

3.1 Comparison of different service discovery proposals 20

8.1 Setup of the simulation . 67

8.2 Traffic distribution . 67

9.1 Default setup for all simulations. 73

9.2 Measured false positive probability . 74

xiii

xiv

Chapter 1

Introduction

If you go out 10 years, computers are not going to be these rectangular objects
we carry around. They are going to be extremely tiny. They are going to be every-
where. There is going to be pervasive computing. It is going to be embedded in
the environment, in our clothing. It is going to be self-organizing.

Ray Kurzweil, 2007

This chapter gives an overview of the motivation behind the thesis and introduces the latest
advances in technology that takes part in the research area. The detailed technical background
is given in the subsequent two chapters.

1.1 Motivation

The research in this thesis is motivated both by previous research done on mobile computing
by the Information and Communication group at the University Graduate Center at Kjeller,
Norway (UniK) and by the work done at the Norwegian Defence Research Establishment (FFI).
While UniK has been doing research on the latest advances in mobile computing, FFI has
been working on providing wearable computing for soldiers. The benefits by equipping every
soldier in the battlefield with mobile computers, sensors, navigation equipment and radios are
indisputable to increase situational awareness and to reduce fratricide.

However, without a proper design, all the technology could end up being a major logistics–
and network administrative challenge and a huge frustration for the individual soldier. It should
therefore be of paramount interest to every engineer, researcher and network designer to seek
to create systems that prevents errors through an intuitive and user-friendly design.

Soldiers are not the only group that demands portable, robust and networked control systems.
The disaster of 9/11, the Hurricane Katrina, and the Asian Tsunami in 2004 have highlighted
the need for first responders from different departments and agencies to have common inter-
operable communication links [63]. Researchers are therefore developing solutions to achieve
network connectivity between mobile nodes both in the tactical domain [80], and in the civil-
ian domain [51]. Both areas share the same challenges: High degree of mobility, unpredictable

1

2 CHAPTER 1. INTRODUCTION

environments and wide range of users—operating in stressed situations.

In such demanding environments, failures are prone to arise. Errors in the original design often
leads to human errors—which in turn leads to technical errors and communication failures [64].
One should strive to create a design that hides complexity from the user and therefore reduces
the number of failures [68]. A better design also facilitates training [99].

From the network perspective, the term better design means robust protocols that performs
background processing to automate trivial tasks in order to let the user concentrate on his/her
main objective.

To create a well-designed network for demanding customers—such as firefighters, policemen
and soldiers—I envision an element of auto-configuration to be inevitable. User-friendliness
through auto-configuration is in fact the main motivation behind the work in this thesis. A
toolbox of standards, products and ideas has recently emerged to facilitate this task. The rest of
this chapter introduces some of them and presents the subject of the thesis.

1.2 Overview

1.2.1 Mobile devices

During the last few years, the world of personal computing has seen a paradigm shift. Technol-
ogy that was until recently available only by the military or in research labs is now a common
part of our everyday life. Mobile devices are gaining popularity both in business and for leisure
and users can access a myriad of information on demand. A tourist visiting a foreign city can
easily check the email, perform a video conference, download electronic maps and browse for
the closest sushi restaurant using a mere handheld device. The change-over is happening thanks
to all the research done in the terms of microelectronics, wireless devices and software technol-
ogy during the last decades.

However, not only humans connect. The trend is towards increasingly interconnected networks
where electric radiators, vehicles, traffic lights, burglar alarms, biometric monitors, vending ma-
chines and lots of other small devices in the environment communicate in pervasive computing.

While we are moving towards a world where more and more devices and people are inter-
connected, we observe that in the same time—as more people embrace the technology—the
average user tend to be less sophisticated. More important, the user is less concerned about the
inner functions of the network technology and more interested in using the system as a tool
[68]. Again—the need for auto-configurable systems and protocols seem inevitable.

1.2.2 Mobile networks

One step in the process to achieve auto-configurable systems is to make the devices able to
dynamically form networks—without the use of any preexisting infrastructure such as fixed
antennas, access points and repeaters.

Mobile Ad-hoc Network (MANET) technology is a useful tool both to establish the networks–

1.3. PROBLEM STATEMENT 3

A B

Software X Service Y

Figure 1.1: Service discovery let the devices find applications and services in the network
automatically—without and user-intervention.

without any infrastructure or system administrator—and to enable communication between any
pair of nodes in those networks. In order to facilitate those two functions, a special routing
protocol is employed. The purpose of the routing protocol is to discover rapid changes of the
topology in such a way that intermediate nodes can act as routers to forward packets on behalf
of the communicating pair.

Early ad-hoc research was mainly aimed at military networks. But, now this technology is
attractive to a wide area of applications: Search and rescue operations, vehicle to vehicle net-
works, tactical networks, virtual classrooms, entertainment and sensor networks are all areas
where great benefit can be achieved using the flexibility, ease of maintenance, auto-configuration,
and the cost advantages of MANETs.

1.2.3 Services

A mobile network normally consists of users with different roles, various types of equipment,
different applications, a handful of sensors, and some shared resources. A way to hide the
apparent complexity from the user is to describe all these elements as services which can be
shared and accessed automatically regardless of their location and ownership.

A service discovery architecture let the devices both discover and take use of services in the
network, as well as advertise their own capabilities (Figure 1.1). This happens without forcing
the user to enter IP-addresses, passwords, user names or other attribute values.

The automatic discovery of services and resources is therefore a crucial feature to achieve the
expected user-friendliness of mobile ad-hoc networks.

1.3 Problem statement

Both Ad-hoc Networks and the task to discover services in various networks have been subject
to much research. Both areas are associated with several challenges, and the subject of this
thesis: Service Discovery in Ad-hoc Networks is far from a trivial task.

4 CHAPTER 1. INTRODUCTION

The research in the thesis seeks to provide service discovery in a wide range of ad-hoc net-
worked applications. However, the research is specially aimed for bandwidth constrained environments—
both civilian and tactical.

1.4 Thesis layout

The thesis is organized as follows:

Chapter 2 gives some background information about mobile ad-hoc networks and general ser-
vice discovery solutions. The chapter also introduces the taxonomy used to classify the
different service discovery architectures.

Chapter 3 gives an introduction about some proposed service discovery techniques for mobile
ad-hoc networks.

Chapter 4 introduces Mercury—the service discovery protocol proposed and developed in this
thesis.

Chapter 5 addresses different evaluation methods used in ad-hoc network analysis.

Chapter 6 describes the implementation of Mercury for the network simulator ns-2.

Chapter 7 describes the implementation of Mercury for real-world usage.

Chapter 8 describes my choice of simulation and validation methods and evaluates a scenario
based on real-world traces.

Chapter 9 tests the most prominent features of Mercury by simulation.

Chapter 10 concludes the thesis and suggests future work.

Abbreviations and acronyms are listed on page 114.

Chapter 2

Background

You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New
York and his head is meowing in Los Angeles. Do you understand this? And radio
operates exactly the same way: you send signals here, they receive them there.
The only difference is that there is no cat.

Albert Einstein, when asked to describe radio.

As the title of the thesis suggests, the contribution of my research is to combine two technolo-
gies: Ad-hoc networks and service discovery. This chapter first presents routing protocols for
mobile ad-hoc Networks. Then, different generic service discovery protocols are presented.

2.1 Mobile Ad-hoc Networks

A Mobile Ad-hoc Network (MANET) is a collection of mobile nodes connected by wireless
links able to dynamically form an autonomous multi-hop radio network—without the use of
any pre-existing infrastructure. Intermediate nodes in a MANET can act as routers to forward
packets on behalf of other nodes. With their self-forming nature and their ability to cope with
rapid changes of the topology, ad-hoc networks are attractive to a variety of applications.

However, it is worth noting that ad-hoc networking introduces a great many challenges and im-
peratives, and also adopts the side effects of wireless computing [17]. Wireless links are signif-
icantly less reliable than wired media, they have unpredictable signal quality and transmission
range, the channel can be time-varying and possible asymmetric, and the wireless link suffer
from security problems not found in wired networks. Further, the multhop nature in MANETs
introduces challenges due to the topology dynamics, heterogeneity, variations of node availabil-
ity and power constrains.

This puts tough requirements to the chosen MANET routing protocol. Traditional routing pro-
tocols designed for fixed networks such as RIP [36] and OSPF [66] are in general not suited
for the ad-hoc environment. The dynamic topology, limited bandwidth and power constraints in
MANETs require tailor made solutions. Mainly two different routing approaches are considered
in mobile ad-hoc networks: Reactive routing and proactive routing.

5

6 CHAPTER 2. BACKGROUND

2.1.1 Reactive routing

Protocols in this category are reactive in the sense that they only attempt to discover routes
between nodes on-demand. Using such an approach, one can lower the total overhead using the
protocol in cost of the initial delay finding the optimal route. Reactive protocols are also named
source initiated or on-demand routing protocols. Some examples of such protocols are AODV
[75], DSR [45], TORA [73] and DYMO [13]. AODV will be described as an example of one of
the most prominent protocols in the category.

AODV

The Ad-hoc On-demand Distance Vector protocol (AODV) aims to obtain routes on-demand,
i.e when an upper layer communication packet is destinated to a node not known in the routing
table. AODV uses three control messages to obtain and maintain routes:

Route Request (RREQ) A source broadcasts RREQ messages to the MANET if the routing
entry is empty for the given destination. AODV can utilize an expanding ring technique
with gradually increasing Time To Live (TTL) for each request to avoid broadcast storm
in the MANET.

Route Reply (RREP) A node replies to a request by sending RREP message either if: (i) it is
the destination; or (ii) if it is an intermediate node and has a fresh route to the destination.
If the destination is not known, the intermediate node will rebroadcast the RREQ. When
a node re-broadcasts a Route Request, it sets up a reverse path pointing toward the source.
This reverse path is used to forward Route Reply (RREP) unicast back to the source.

Route Error (RERR) If a node is unable to forward packet, it generates a RERR message.
When the originator node receives the RERR, it initiates a new route discovery for the
given route.

In addition, AODV performs route maintenance on active routes. If one node in an active path
discovers a link breakage, a route error message will be transmitted upstream. The source node
will then initiate a new route request.

2.1.2 Proactive routing

In contrast to reactive routing protocols, proactive routing protocols seek to maintain routes to
all nodes regardless of upper layer communication demands. By exchanging control messages
periodically, the routing table can be kept updated and fresh routes can be provided immediately.
Compared to reactive routing protocols, this approach yields more control message overhead,
but no initial delay to set up a route prior to communication.

Examples of proactive (or table-driven) routing protocols are FSR [29], OLSR [20], TBRPF
[70] and WOSPF [3]. OLSR will be described as an example.

2.1. MOBILE AD-HOC NETWORKS 7

(a) Normal flooding (b) MPR flooding

Figure 2.1: Flooding in a multihop network. Flooding through multipoint relays (MPRs) reduce the
number of duplicate transmissions.

OLSR

The Optimized Link State Routing Protocol (OLSR) for MANET is a proactive, link-state rout-
ing protocol where each node maintains topology information by periodically exchanging link-
state messages. The novelty of OLSR is to employ multipoint relays (MPRs) to minimize the
number of control messages flooding in the network. Each node chooses a subset of its one-
hop neighbors (MPRs) in such a way that these MPRs will cover all two-hop away neighbors.
Hence, messages are only flooded through MPRs, and not to all nodes (Figure 2.1).

Core functioning of OLSR is: Packet format and forwarding; link sensing with hello messages;
neighbor detection; MPR selection and MPR signaling; topology control message diffusion;
route table computation; node configuration. Three control messages are defined to provide this
functionality.

HELLO HELLO messages are exchanged between neighbors only, and diffuse information
about the one-hop neighbors of a node. Upon reception of HELLO messages, the two
hop neighborhood can be discovered, and further, the MPRs of the given node can be
chosen. The MPRs chosen by a node is further marked in the following HELLO messages
broadcasted by that node.

TC - Topology Control In OLSR, all nodes chosen as MPR will transmit TC messages. The
TC messages contain the address of the node generating the message, as well as the list of
nodes that has chosen the given node as MPR (MPR selectors). TC messages are further
flooded using the MPRs, disseminating network topology information to all the nodes in
the OLSR network.

MID - Multiple Interface Declaration The MID message is broadcasted by nodes running
OLSR on more than one network interface.

8 CHAPTER 2. BACKGROUND

d

d

c

c

c

c c

c

c

c

c c

dc

c

c

c c

(a) Directory-based

d

d

c

c

c

c c

c

c

c

c c

dc

c

c

c c
(b) Directory-less

d

d

c

c

c

c c

c

c

c

c c

dc

c

c

c c

(c) Hybrid

Figure 2.2: Three different service discovery architectures. Clients (c) either connect directly or via a
directory (d).

In addition, a fourth message type, Host and Network Association (HNA) message disseminates
information about OLSR nodes that act as gateways (etiher to the Internet or to a separate
Ethernet).

Using a common format for all messages the OLSR standard provides extensibility of the pro-
tocol without breaking backwards compatibility. This feature gives a unique possibility to dis-
seminate additional information through intermediate nodes even if the nodes do not support
the specific extension.

2.2 Service discovery

When the ad-hoc network is established and working, users will obviously want to run different
applications. Those application will usually provide or request (or both) services in the ad-hoc
network.

In these terms, service discovery (or resource discovery) is an important area. Service discovery
provides functionality to automatically discover capabilities and to advertise own capabilities to
the network. Using service discovery, users can search for services by name, type or class and
utilize those services without any further knowledge about the underlying network architecture.

The different service discovery protocols and proposals differ in architecture design, discovery
mode and definition of service descriptors.

2.2.1 Architectures

Regarding the dissemination of service information, there are three different architectures avail-
able when creating a service discovery protocol.

Directory-based

A directory-based service discovery infrastructure consists of one or several service directories.
These directories are the only binding between service providers and service clients. Service

2.2. SERVICE DISCOVERY 9

providers register their services in the directory and clients search for services in this directory
(Figure 2.2(a)).

In fixed Ethernet networks, usually one node takes the role of the directory. In mobile ad-hoc
networks, however, this architecture is not preferable as the directory node will represent a
single point of failure and may be out of reach due to mobility. Even within reach, the link
to the directory node can be considered unpredictable. Hence, distributed directories are pre-
ferred. This solution will on the other hand introduce other challenges such as synchronization
(between directories, service providers and service clients) and must provide an algorithm to
automatically elect new directory nodes if one node fails.

Directory-less

A directory-less architecture omits the use of directories, and use a distributed approach only
involving clients (Figure 2.2(b)). Hence, there is no need to select directory nodes or to per-
form synchronization between directories. However, without directories, service requests and
advertisements must be disseminated between nodes using either by broadcasting or multicas-
ting. This may induce considerable bandwidth and can be costly in terms of resources on the
individual nodes.

Hybrid

Hybrid architectures seek to combine the benefits from the two approaches. Service information
is primarily stored on each service provider, but a set of service directories are chosen to be the
main binding between services and service requests (Figure 2.2(c)). If a client is aware of an
available directory, this directory is preferred. Otherwise, requests are flooded in the network.

Evaluation of architectures

A lot of aspects determine the choice of architecture. The size of the network, the number
and type of services, service availability demands and the underlying network protocols are
all factors influencing the choice. There is no common consensus on which architecture is the
better one. In [81], the hybrid approach is preferred. In contrast, the work in [25] shows that a
directory-less architecture performs better than both directory-based and hybrid architectures,
partly because the fact that false positive service replies from the service coordinators increase
with increasing network dynamics in MANETs.

The hybrid architecture puts an extra load to reactively routed networks, as it triggers addi-
tional route requests- and replies compared to the directory-less architecture. This performance
issue is obviously not the case in proactively routed networks, where route requests are not
on-demand per nature. It should be noted that both directory-based and hybrid architectures
introduce complicated mechanisms for electing service coordinators, and put extra load to the
infrastructure.

10 CHAPTER 2. BACKGROUND

Service Provider

Client

Service Provider

Client

Advertisement Request

Service Provider

Client

Request

Advertisement

(a) Proactive

Service Provider

Client

Service Provider

Client

Advertisement Request

Service Provider

Client

Request

Advertisement

(b) Reactive

Service Provider

Client

Service Provider

Client

Advertisement Request

Service Provider

Client

Request

Advertisement

(c) Hybrid

Figure 2.3: Service information can be gathered in different ways.

2.2.2 Discovery Mode

Independent of the chosen service discovery architecture, service information can be gathered
either in a reactive, proactive or hybrid way.

Reactive

Using a reactive mode, a service requester node creates a query on-demand whenever a certain
service is desired (Figure 2.3(b)). The query is then sent to the network either using unicast,
broadcast or multicast depending on the service discovery architecture.

Proactive

A proactive mode implies that service providers proactively distributes their available services
(Figure 2.3(a)). The distribution is performed either directly to potential service clients or to
service directories. Obviously, this approach yields more traffic than the reactive mode. On the
other hand, the initial service discovery delay is reduced.

Hybrid

A hybrid discovery mode supports both reactive requests and proactive service advertisements
(Figure 2.3(c)). This approach must then support that the service information may be distributed
in several ways depending on topology. Some nodes may know all service information, while
some nodes have no information at all and must rely on creating service requests.

2.2.3 Descriptor options

There are different approaches to describe the service information in requests and advertise-
ments. Many service discovery protocols use XML to describe the service information. Such a
method is adopted in [37]. An other approach is to create service descriptors from ontologies
designed for the semantic web services by the use of the Web Ontology Language (OWL) as
proposed in [51]. Using such an approach, the ontology must be distributed among the nodes

2.2. SERVICE DISCOVERY 11

Service Descriptor size

F
le

x
ib

il
it

y
GUID

XML

OWL

String Match

Bloom Filter

Figure 2.4: Comparing different service descriptor options based on their flexibility in use and their size.

prior to communication. However, both XML and OWL descriptions require considerable band-
width, which is sparse in ad hoc networks. Some sort of compression could be used to address
this deficiency [83] if rich and flexible service descriptors are necessary.

Some proposals seek to reduce bandwidth consumption, and do not see the benefits of using
XML or OWL as necessary. By mapping a predefined set of service descriptors, to integers as
in [43] or Unique Universal Identifiers (UUIDs) as in [69] the description can be reduced to a
few bytes. Such solutions save bandwidth compared to transmitting XML files. However, such
solutions are not very flexible nor scalable, as maintenance on every node in the network is
required when new service categories are added.

In between those two schools, we find Bloom filters [8]. Using Bloom filters, any textual service
descriptor can be hashed to a size-defined array without requiring a predefined static set of
keywords. In [81], Bloom filters are used to summarize the content of a service directory by
hashing the set of WSDL-based service descriptions to a short array.

The different alternatives to service descriptors are compared based on their flexibility (in terms
of range of target applications) and their size in Figure 2.4.

2.2.4 Service discovery standards and proposals

The overall Internet community has not yet reached a consensus on one particular service dis-
covery protocol. Several consortiums, companies and organizations have simultaneously been
doing research and created their own service discovery protocols. Although most of the pro-
posed protocols do not fit in the ad-hoc environment, a short introduction of the most popular
solutions for service discovery will be given. It should be noted that all service discovery pro-
posals made for MANETs—as described in the next chapter—are to a certain extent inspired
by the following solutions.

12 CHAPTER 2. BACKGROUND

Anycast

A simple way to provide service discovery is to take use of IP-anycast [74]. Using anycast, a
client transmits a datagram to a well-known anycast IP address. The routing protocol is then
responsible for transmitting this datagram to at least one of the servers that accept datagrams
with this address. Using standard routing, the closest server will always be chosen. This func-
tionality simplifies the task of finding a certain server when the user does not particularly care
which server is used—like mirrored ftp-servers or DNS-servers.

Although anycast is usable to discover service directories as described in [97], anycast has got
several limitations making it difficult to provide a complete service discovery system: First, it
is impossible to browse for all nodes in a network providing a certain service class, since the
routing protocol will only provide an entry to the closest server matching the anycast address.

Anycast is also limited by the fact that there must be provided one anycast address for each
service class in the network. Further, in fine-grained service environments anycast is not the
preferred solution, as the protocol does not allow a search for special services. Finally, if a new
node enters the network without knowing the anycast address of a service class, no services will
be discovered.

Service Location Protocol (SLP)

Service Location Protocol [33] is developed by IETF as a vendor independent standard. The
SLP architecture is based on three components: (i) User agents (UA) - which are the software
entities that perform the service discovery; (ii) Service agents (SA) - which advertise the lo-
cation of services; (iii) Directory agents (DA) - which act as central repositories and collects
service information from service agents and responds to service requests from user agents. Ser-
vices and their location are represented as service URLs. UAs and SAs discover the presence
of a DA by sending service requests for the DA at startup. The DA also periodically advertises
its presence using multicast.

The Service Location Protocol is not widely supported, mainly because dominant companies
such as Apple and Microsoft are developing and supporting other service discovery protocols.

Simple Service Discovery Protocol (SSDP)

Simple Service Discovery Protocol (SSDP) [30] is a part of UPnP. UPnP also takes advantage
of automatic link-local address choosing [14] to give a auto-configured IP solution. UPnP is
included in Windows XP, Vista and several brands of network equipment.

The protocol is based on the following three components: (i) SSDP service—which represents
the service agent; (ii) SSDP client—which is the user agent utilizing the services; (iii) SSDP
proxy—which is the directory agent representing the binding between the SSDP service and
SSPD client. SSDP utilizes unicast HTTP to communicate wit the SSDP proxy. However, the
SSDP proxy is not a mandatory part of SSDP, meaning that service information can disseminate
in the network without this central entity using HTTP multicast.

Due to the use of HTTP, SSDP is unsuitable for most bandwidth constrained environments.

2.2. SERVICE DISCOVERY 13

DNS Service Discovery (DNS-SD)

DNS Service Discovery (DNS-SD) [15] is a way of using the existing DNS records to locate
services. DNS-SD was originally proposed by Apple as a part of Bonjour (formerly Rendevouz)
and also consists of link-local address choosing [14] and Multicast DNS (mDNS). Bonjour can
be considered as Apples counterpart to UPnP that is provided by Microsoft.

Bonjour is included in MAC OS X and is used by Apple software such as iPhoto, iChat and
iTunes and also supported by the KDE and Gnome desktop environments found on Linux and
BSD platforms. Since Apple first launched Bonjour in 2002, every major maker of network
printers has adopted Bonjour and uses DNS-SD to advertise the printer service to the local area
network [16].

DNS Service Discovery itself is a way of using the existing DNS records to locate services. The
protocol can be used to obtain names, service types, port numbers and other attribute informa-
tion. Since a Bonjour implementation most likely will have a multicast DNS responder for the
name-to-address translation, service discovery can be implemented in quite a lightweight man-
ner using the multicast DNS responder to disseminate service information. Even if DNS-SD is
considered simpler than SSDP—because it uses DNS rather than HTTP—it is not suitable for
low bandwidth ad-hoc networks.

Jini

Jini [87] is a product from Sun Microsystems and is heavily based on Java and Java RMI. In
addition to service discovery, Jini provides service invocation, transactions and event notifica-
tion. Jini allows clients to join a Jini lookup service (JLS), which correspond to the directory
agent in the SLP protocol. Using the JLS, the clients can request information about services
as well as publish their own services. Publishing a service is performed by uploading a service
object to the JLS. This object contains the Java programming interface for the service including
necessary methods and applications. The lookup service hence stores Java code necessary for
the clients to access the particular service. Discovery is conducted by multicasting a request for
a lookup service in the local network.

The bandwidth consumption generated by the discovery process and the fact that Jini is tied to
Java and requires a Java Virtual Machine, makes it unsuitable for most low powered embedded
systems, including MANETs.

Bluetooth Service Discovery Protocol (SDP)

The bluetooth communication stack contains the Bluetooth Service Discovery Protocol (SDP).
The protocol addresses service discovery especially for bluetooth networks.

When searching for services, an SDP client creates a service request PDU containing a search
pattern. The search pattern supports searching for services by name, searching by attributes, and
browsing the network for any service. A SDP server will respond with a service PDU containing
service records for the matching services. The respond can contain additional information as
attributes, or the SDP client may request these attributes using a separate request PDU.

14 CHAPTER 2. BACKGROUND

2.2.5 Evaluation

Even if the service discovery protocols described in this chapter share much resemblance, they
also have different salient features. It should be noted that the protocols are aimed for fixed local
area networks or short range wireless networks and are not directly applicable for mobile ad-
hoc networks. However, they have served as an inspirational base for developing improvements
or completely new protocols tailor made for MANET.

Anycast is a very simple approach and can hardly be called a service discovery protocol. Never-
theless, it is a technique suitable for some applications e.g. when searching for a specific server.
Developing an anycast routing protocol for ad-hoc networks has proven to be difficult [94].
However, research is on-going to solve this issue in OLSR-based MANETs [23].

Service Location Protocol is although relatively simple, not suitable for MANETs due to its
extensive use of directory servers. SLPManet [2] is proposed as an optimization of SLP for
MANETs. SLPManet works without directory servers, and also introduces caching in order to
reduce the overhead induced in the discovery process. This protocol is further described in the
next chapter.

DNS-SD and SSDP share much resemblance. Both protocols require an underlying multicast
routing protocol—which is not yet standardized for mobile ad-hoc networks. A proposal to
optimize SSDP to better suit MANET without using multicast is described in [82]. However,
the proposal is prone to generate broadcast storms in the network and is not optimal in terms
of bandwidth consumption. Neither DNS-SD is considered usable for MANET without severe
optimizations [38].

Jini is tied to the Java programming language, which may not be adaptable for all mobile de-
vices. In networks with no fixed infrastructure—such as mobile ad hoc networks, a reliable
connection to the lookup service can not be ensured, making the Jini architecture unsuitable for
those networks according to [32]. In [7] Jini is used in an ad-hoc network by taking advantage
of a series of adjustments to the protocol.

SDP is a scaled down solution and is only supported on Bluetooth devices, and can therefore
not be used in mobile ad-hoc networks. However, as the ideas are simplistic they are applicable
for other service discovery solutions tailor made for MANET.

The next chapter covers service discovery protocols aimed for pure mobile ad-hoc environ-
ments.

Chapter 3

Related research

Two laptop computers sit less than two feet away from each other. They are so
close they are nearly touching—and yet, until recently, as far as network commu-
nication is concerned, they may as well have been thousand miles apart.

Stuart Cheshire1

The previous chapter introduced general service discovery protocols aimed for local area net-
works and short-range wireless networks. This chapter describes some of the most prominent
service discovery proposals for mobile ad-hoc networks.

3.1 Introduction

Most of the existing service discovery protocols are primarily designed for fixed networks and
are not directly applicable for MANETs without adaptations. Tailor-made solutions specific
for MANETs are therefore chosen in favor of more generic solutions. However, since different
MANETs vary in size, equipment, applications and objectives, a variety of proposed service
discovery architectures for MANET exist to solve specific purposes. Some of the solutions focus
mainly at scalability in order to support hundreds or even thousands of nodes. Some solutions
seek to minimize latency in the discovery process, while others are focused on reducing the
control message overhead to support bandwidth-constrained environments.

Irrespective of the service discovery architecture (directory-based, directory-less or hybrid),
or the discovery mode (reactive, proactive or hybrid) there are two possible approaches when
designing a MANET service discovery protocol:

Application-layer service discovery Refers to protocols independent of the underlying rout-
ing protocol

Cross-Layer service discovery Refers to protocols integrated with the routing protocol, be it
either reactive or proactive.

1from the book ”Zero Configuration Networking” [16].

15

16 CHAPTER 3. RELATED RESEARCH

Service Discovery

Transport

Network

Link

Transport

Link

S
er

v
ic

e
D

is
co

v
er

y

Network

Application

(a) Application-layer service discovery

Service Discovery

Transport

Network

Link

Transport

Link

S
er

v
ic

e
D

is
co

v
er

y

Network

Application

(b) Cross-layer service discovery

Figure 3.1: Service discovery protocols for MANETs work either at the application layer or are consid-
ered as cross-layer protocols.

Most MANET service discovery proposals belong to the first category, and place service dis-
covery at a layer above routing (Figure 3.1(a)). Such mechanisms create an overlay on top of
the network layer to disseminate service advertisements, requests and replies in the network.
There are several advantages using this method: (i) as no assumption is made about the under-
lying network, it is possible to create pervasive service discovery architecture across different
networks domains. (ii) The architecture can be based on existing standards, since the size of the
service descriptors is not limited by the routing protocol. (iii) A modular and layered approach
is maintained making it possible to replace protocols at any layer.

Cross-layer service discovery is motivated by the need to optimize control overhead and reduce
service-acquisition latency. As both the service process and the routing process must coexist in
an ad-hoc network—both processes generate and receive messages. It is therefore possible to
exploit the routing layer for efficient dissemination of service control messages (Figure 3.1(b)).

Different service discovery proposals from both categories will now be described.

3.2 Application-layer service discovery

Most application-layer service discovery protocols are ambiguous in the terms that on the one
hand they strongly support the layered approach and claim to be independent of the underly-
ing network architecture. On the other hand, they rely on network-layer support to multicast or
broadcast the service discovery messages. If the target MANET supports multicast, application-
layer service discovery leads to a simple and modular design. Thus, it is possible to disseminate
service discovery through intermediate nodes that does not run any service discovery code (Fig-
ure 3.2). However, it should be noted that multicast in MANETs is still at the research stage (no
standard is defined) and is hence an open issue.

3.2. APPLICATION-LAYER SERVICE DISCOVERY 17

Application Layer

Service Discovery

Routing Routing

Application Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing

Routing

Application Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing Routing

Cross Layer

Service Discovery

Routing

Figure 3.2: Using service discovery at the application level, all nodes in the network can forward service
discovery messages.

3.2.1 Pervasive Discovery Protocol

The Pervasive Discovery Protocol (PDP) is a directory-less protocol aimed for ad-hoc net-
works [12]. Each PDP node has a User Agent (PDP-UA) and a Service Agent (PDP-SA). The
PDP-UA-process search information in the network and the PDP-SA process advertise services
offered by the device. For each advertisement, an availability time is included. Entries are re-
moved from the cache of each node when the availability timer runs out without being updated.

PDP operates in reactive mode and assumes that the underlying network is either a one-hop
network, a multi-hop ad-hoc network with multicast routing support.

3.2.2 Konark

Konark [37] is a directory-less service discovery architecture based on a peer-to-peer model
using lightweight HTTP servers. The protocol defines its own description language loosely
based on WSDL (Web Services Description Language) [59]. HTTP and SOAP [55] are utilized
to handle service delivery. The Konark architecture maintains a tree-based structure to cope
with service classification. The format support search for either all, generic or specific services
in each category and the requests can be done either using simple keywords or a more fine-
grained service description if a specific service is desired.

Using this classification, a node can search for a general printer, or choose to do a more detailed
search for a color laser printer on the second floor. Konark supports both proactive and reactive
service advertisements, and both servers and clients can actively discover and advertise services
on a need basis. A service request is sent to a fixed multicast group, and all the nodes with a
matching service will respond. A time-to-live field is specified in the service advertisement
process and enables local caching of service descriptors on each node.

3.2.3 SLPManet

SLPManet [2] is an adaptation of Service Location Protocol [33] to make it work in MANET
environments. The most prominent change from SLP is that Directory Agents (DAs) are omitted
from the protocol, making the architecture directory-less. As a consequence, Service Agents
only reply on requests from User Agents (reactive mode), in contrast to SLP, which supports

18 CHAPTER 3. RELATED RESEARCH

both proactive and reactive discovery between Service Agents and Directory Agents. Optional
SLP messages such as Attribute Request and Service Type Request as defined in the RFC are
not implemented in the MANET adaptation.

The protocol includes a simple caching scheme, where all nodes in the network cache service
information for a certain time. Caching increases performance but—as anticipated in [2]—
cache entries may be false when the network topology changes. This is a general problem in all
application-layer designs without access to routing information (i.e. non cross-layer designs).

3.2.4 Sailhan

Sailhan et.al has proposed a directory-based service discovery architecture2 aiming at large-
scaled ad hoc networks [81].

Directories in Sailhan are distributed and deployed dynamically. The directories form a virtual
backbone of nodes exchanging service requests and replies using WSDL service descriptors.
The architecture is by definition independent of the routing protocol, and communication be-
tween directories is done using a special bordercasting technique. The bordercasting is inspired
by MPR flooding used in the OLSR routing protocol [20]. The architecture can also take ad-
vantage of the OLSR MPR election itself instead of creating the bordercast overlay on its own.
Hence, even if the service information is distributed at the application layer, the protocol can
utilize some cross-layer optimizations.

The dynamically allocated directory agents are deployed so as at least one directory is reachable
in at most a fixed number of hops. Directories then cache the descriptions of services available
in their vicinity and uses Bloom filters [8] to summarize the content of the directory by hashing
the set of WSDL-based service descriptions.

3.3 Cross-Layer service discovery

Cross-layer design refers to protocol design done by actively exploiting the dependence between
protocol layers to obtain performance gains [85]. By doing this, cross-layer solutions may vi-
olate the modular layered approach. A violation of a layered architecture involves giving up
the luxury of designing protocols at different layers independently. Such optimizations should
therefore be used with caution as cross-layer interactions can have undesirable consequences
on system performance [47].

However, in some situations, cross-layer interactions are inevitable to eliminate the redundan-
cies associated with repeating similar tasks found on adjacent layers [86].

Cross-layering in a service discovery context means all optimizations done by taking advantage
on information found on lower layers—such as examining the routing table or measuring signal
quality. Henceforth, the term cross-layer service discovery refers to service discovery solutions
that utilizes the routing process to disseminate service discovery messages. Routing-layer sup-
port was first introduced by Koodli and Perkins [50]. Now, several different proposals exist both
for reactively routed and proactively routed MANETs.

2In this thesis, I take the liberty to name the architecture Sailhan.

3.3. CROSS-LAYER SERVICE DISCOVERY 19

Application Layer

Service Discovery

Routing Routing

Application Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing

Routing

Application Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing Routing

Cross Layer

Service Discovery

Routing

Figure 3.3: Some cross-layer service discovery proposals require changes to the routing protocol. Inter-
mediate nodes without those modifications prevent successful service discovery.

3.3.1 Reactively Routed MANETs

SEDRIAN is a directory-less service discovery architecture relying on AODV as routing proto-
col [69]. Service information can be described in two different ways: An optimized description
using a 128-bit Universal Unique Identifier (UUID) for generic services, and a more descriptive
language to advertise special services that cannot be described in a simple UUID.

SEDRIAN exploits AODV by encapsulating three new packets in the AODV RREP message:
DREQ (Discovery Request) contains a request for a UUID-based service. DREP (Discovery
Reply) contains a reply to a discovery request. The last message is ADVM (Advertisement
Message). It contains the advertisement any special service provided.

It should be noted that since SEDRIAN uses the AODV RREP message to disseminate dis-
covery requests, replies, and advertisements, the proposal brings severe changes to the original
AODV protocol. The RREP is not originally used as a broadcast message in AODV, and some
adjustments are therefore necessary to avoid packet loops. For this reason, all nodes in the net-
work must support SEDRIAN in order to make the discovery process work. Any AODV node
in the network without the SEDRIAN extension, will prevent service discovery messages to be
disseminated (Figure 3.3).

The proposal by Engelstad et.al [26] bears resemblance to SEDRIAN, but utilizes AODV in a
slightly different manner. In addition, the protocol can be implemented both discovery-less and
as a hybrid architecture.

Using a discovery-less architecture, service discovery requests (SREQ) are piggybacked on
AODV Route Request Packets (RREQ), and service discovery replies (SREP) are piggybacked
on AODV Route Reply packets (RREP). Using the hybrid architecture, the service coordinator
announcements are piggybacked on AODV RREQ packets and service registrations are piggy-
backed on AODV RREQ packets. Using this technique, there is no need to change the original
AODV code, except allowing piggybacking of service discovery messages.

A thorough study of service discovery in reactively routed MANETs can be found in [98].

20 CHAPTER 3. RELATED RESEARCH

Protocol Service descriptor Dissemination Routing Architecture Mode
PDP Text Multicast Any Directory-less Reactive
Konark WSDL Multicast Any Directory-less Hybrid
SLPManet SLP-url Multicast Any Directory-less Reactive
Sailhan WSDL Multicast Any Directory-based Hybrid
SEDRIAN UUID+ Cross-layer AODV Directory-less Reactive
Engelstad Not defined Cross-layer AODV Hybrid Reactive
Jodra Fixed integer Cross-layer OLSR Directory-less Proactive
LSD Not defined Cross-layer OLSR Hybrid Hybrid

Table 3.1: Comparison of different service discovery proposals

3.3.2 Proactively Routed MANETs

Jodra et.al [43] present a solution on integrating service discovery with the OLSR routing proto-
col. The different OLSR messages [20] share a common message header. Utilizing this header,
a new message called Service Discovery Message (SDM) is introduced. The SDM packet can
contain either a service advertisement or a query.

The proposal also introduces a service cache for each node in the network. The cache stores all
services available, both local and foreign. Whenever a node wants to use a service not stored in
its local cache, it sends a request asking for the service using the SDM query message. SDM
messages are forwarded by the MPRs in the network. Upon receiving a SDM query message, a
node checks whether its local services corresponds to the service asked for in the query SDM.
If this is the case, it will send an advertisement message announcing the requested service. The
answer is MPR flooded.

As the complete SDM message is only 8 bytes, and thanks to piggybacking of the SDM to the
OLSR packets, only a small overhead is added to the network. However, it should be noted that
this efficient, albeit limited message format, cannot cope with advanced and detailed service
descriptors. Further, the service descriptors must be a priori known to all the nodes running
service discovery.

A similar proposal, which also utilizes OLSR as routing protocol, is Lightweight Service Dis-
covery (LSD) [57]. A message similar to the previously mentioned SDM, Service Location
Extention (SLE), is here introduced. LSD supports both directory-less and directory-based ar-
chitectures. Using the latter architecture, the discovery mode can be both reactive and proactive.
The proposal bears resemblance both to [43] and to ideas presented in [24].

3.4 Summary

This chapter has described a variety of different service discovery proposals for MANETs with
different salient features. The features are summarized in table 3.1.

Most proposed service discovery solutions solves service discovery at the application layer,
arguing that cross-layer solutions violates a modular layered approach and hinder easy inter-
change of routing protocols. However, a cross-layer integration of the service discovery archi-
tecture with the routing protocol seems to bring considerable optimizations and the benefits are

3.4. SUMMARY 21

Application Layer

Service Discovery

Routing Routing

Application Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing

Routing

Application Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing

Cross Layer

Service Discovery

Routing Routing

Cross Layer

Service Discovery

Routing

Figure 3.4: The OLSR default forwarding algorithm forwards service discovery packets without having
to change the original OLSR code.

indisputable both in proactively and reactively routed MANETs. As the focus in this thesis is
on low-bandwidth environments, I state that cross-layer solutions are inevitable.

It is important to use a service discovery architecture that is transparent to avoid that every node
in the network must run service discovery code. Unaware nodes in the network should be able
to forward requests, replies and advertisements on behalf of other nodes. Using an application-
layer design with multicast dissemination, such a transparent architecture is possible (3.2). But,
as shown in Figure 3.3, not all cross-layer proposals support such a transparent concept and
require changes to the routing protocol to ensure packet forwarding of service discovery mes-
sages.

The choice of routing protocol is a matter of operational scenario, traffic patterns, available
bandwidth, delay requirements as well as a matter of personal taste. Research favoring both re-
active, and proactive protocols can be found. I envision a cross-layer service discovery protocol
based on the following consepts:

• It should use OLSR to aim for transparency.3 The OLSR default forwarding algorithm
forwards all packets (also new and unknown packet types) using MPR forwarding (Figure
3.4).

• The architecture should be directory-less to eliminate the overhead with selecting and
maintaining directories.

• It should include caching to reduce control traffic and to lower the discovery delay.

• Service descriptors must be defined in an efficient and flexible manner.

• It should be tailor made for low-bandwidth environments and seek to lower the overhead
on the routing protocol.

The rest of this thesis describes and evaluates a new service discovery protocol that seeks to
fulfill the requirements above.

3An OLSR-network such as Freifunk Berlin [28] consists of over 700 nodes. Any pair of nodes in this network
can take immediately use of an OLSR-based service discovery protocol without having to update any code at the
other nodes.

22 CHAPTER 3. RELATED RESEARCH

Chapter 4

Mercury - A cross-layer service
discovery protocol

Why can‘t computers in real life work like they do on Star Trek? (. . .) They don‘t
have to do all that careful handwork involving cables and IP addresses and logins
and passwords on Star Trek—it all just works. Is it just special effects, or are we
missing something?

Paul Vixie

Considering the requirements drawn in the previous chapter, I propose a new service discovery
protocol. This chapter provides a design overview of the new protocol.

4.1 The design

As different MANETs vary both in size, equipment, applications and objectives, a variety of
different protocols to solve service discovery in these networks are proposed and implemented.
Some of them have been described in the introduction of this thesis.

The aim in this thesis is to create and evaluate a new service discovery design for low-bandwidth
ad-hoc networks primarily aimed at tactical and first responder networks. In order to make an
efficient service discovery solution suitable for such environments, I envision several optimiza-
tion elements to be included. These elements are:

• Service information (service descriptors) must be defined in an efficient manner and
should be scalable to support several simultaneous requests or advertisements.

• The service discovery process must rely on efficient service descriptor dissemination to
save bandwidth.

• The solution should be fully distributed both to optimize for speed and to obtain redun-
dancy.

23

24 CHAPTER 4. MERCURY - A CROSS-LAYER SERVICE DISCOVERY PROTOCOL

Application Mercury Ad hoc Network

Advertisements

& Requests

Replies

Advertisements

& Requests

Advertisements

Figure 4.1: Mercury connects users and applications to services in the ad-hoc network using service
advertisements and service requests.

In this thesis I propose a new service discovery protocol— subsequently named Mercury1. The
protocol works in the following manner: The service descriptors are described using Bloom
filters. The service dissemination is done by piggybacking service information on OLSR routing
messages, and the solution is fully distributed and utilizes intelligent local caching with service
handover support.

The purpose of Mercury is to act as a common framework that connects services distributed
in the ad-hoc network to users and applications (Figure 4.1). I will now describe the different
components of Mercury.

4.2 Service description by Bloom filters

The proposed solution in this thesis is to distribute a summary of the available services as a
vector (or array) described as a Bloom filter [8]. The technique of Bloom filters was originally
used primary in database applications, but due to the interesting characteristics of Bloom filters,
the technique has received attention in many aspects of computer network research. Both peer-
to-peer networks, packet routing, data measurement, dictionary systems and password checking
are applications that can benefit from Bloom filters [10]. Bloom filters can be considered in
any application where implementation space of a list is important and a small amount of false
positives can be accepted.

For our purpose, a Bloom filter is an efficient way to describe services. Using such filters, it
is possible to summarize all available services on one particular node or directory in a small
size-defined array. The approach gives network efficient and timely service dissemination.

In dense networks with a high number of available services, there is a chance for false positive
service replies: A node may falsely respond positive to a query even if the requested service is
not actually offered. The false positive rate can be minimized by analyzing the filter and then
setting the different parameters of the filter to optimal values.

1In roman mythology, Mercury was the messenger of the gods and the major god of trade, profit and commerce.
Light footed, and with winged sandals, he carried urgent messages for the other gods.

4.2. SERVICE DESCRIPTION BY BLOOM FILTERS 25

0 1 2 3 4 5 6 m

hash(”Gateway”, k) = {1,4,5}

(a) The first service is added to the Bloom filter

0 1 2 3 4 5 6 m

hash(”Printer”, k) = {2,4,6}

(b) The second service is added to the Bloom filter

0 1 2 3 4 5 6 m

hash(”Map Server”, k) = {0,3,6}

(c) This service is not found in the filter

0 1 2 3 4 5 6 m

hash(”VideoCamera”, k) = {1,5,6}

(d) This query yields a false positive

Figure 4.2: A Bloom filter of m bits is used to store service descriptors. Two services are added to the
filter. A query of the service ”Map server” shows correctly that this service is not part of the filter. How-
ever, the Bloom filter responds positive to the query ”VideoCamera” even if the service is not actually
part of the filter (i.e. false positive).

4.2.1 Introduction

In our context, the intention of the Bloom filter is to represent a set S = {x1, x2, . . . , xn} of n
service descriptors in an efficient manner. We start by defining a Bloom filter v implemented as
an array of m bits. All the bits {1, . . . ,m} are initially set to 0. The filter uses k independent
hash functions h1, h2, . . . , hk with range {1, . . . ,m} to hash each service descriptor x to the
array v.

For each service descriptor x ∈ S, the hash output hi(x) represents an array position in v,
v[hi(x)] that is set to 1 for all hash functions i = 1, 2, . . . , k. One location in v can be set to
1 multiple times, however it is obvious that only the first change has any effect. Figure 4.2(a)
and 4.2(b) illustrates two different services hashed by three hash functions and then added to
the same array (or filter).

In order to check whether any service z is in the Bloom filter, we have to determine whether all
hi(z) are set to 1. If this is the case, we assume that the service z is avaliable. If all hi(z) are
not 1, the service is not part of the filter—as in Figure 4.2(c). The Bloom filter may, however,
yield a false positive if the filter indicates that a service descriptor z ∈ S even though it is not
(Figure 4.2(d)). The chance of getting a false positive lookup can be estimated using calculus
of probability.

4.2.2 False positive calculation

Given that m is the length (in bits) of the Bloom filter, n is the number of service descriptors
inserted in the filter, and k is the number of hash functions used, the false positive probability is
given by equation 4.1. Calculations can be found in Appendix A.1.

Pfp =
(
1− e−

kn
m

)k
(4.1)

26 CHAPTER 4. MERCURY - A CROSS-LAYER SERVICE DISCOVERY PROTOCOL

Notice that the number of services is the only value that can vary while the application is running
It is therefore important to have a thorough understanding of the target application and to set
the parameters k and m carefully to minimize the probability of false positive queries.

There are two ways to reduce the chance of false positives: One approach is to change the
number of hash functions k. The second method is to increase the size of the Bloom filter itself,
namely m.

The optimal number of hash functions

The optimal value of k can be calculated by taking the derivate of the equation 4.1 (See Ap-
pendix A.2 for calculations). We then find that the optimal number of hash functions, kopt, for
a filter of width m and a certain number of service descriptors n is:

k =
m

n
ln 2 ⇒ kopt = bke (4.2)

When designing a service discovery protocol based on Bloom filters, equation 4.2 is important
in order to choose the best number of hash functions. The number is given by the expected
number of services to be stored and the filter width reasonable with respect to the transmission
protocol and radio medium limitations. In Mercury, the default number of hash functions is
four.

The size of the filter

In order to minimize the false positive rate, the filter (m) should mathematically be as large
as possible—preferably indefinite. However, computation time, network data rate and memory
consumption limits the feasible size of the filter.

Figure A.1 in appendix A.3 shows how the false positive vary by changing the number of hash
functions and the size of the filter. In Mercury, the default filter size is 128 bits.

4.2.3 The Mercury Bloom filter

The heart of the Bloom filter is the hash function. Any hash function can be used as long as it is
able to map an item (e.g. service descriptor) to a pseudo-random number uniform over the range
1 . . . m. Equally important: the outcome of the k different hash functions must be independent.
One way to implement a hash function is to use a series of modulo functions (such as in SBDM
hash). Another approach is to use a cryptographic hash function such as MD5 [77].

Even if MD5 is considered insecure for most cryptographic purposes today, it has desirable
properties as a basis for a Bloom filter hash function. MD5 is deterministic and uniform, and
has excellent collision resistance for our purpose. MD5 also exist as open source code for many
programming languages, and implementations are relatively fast. Due to its qualities, the false
positive probability can be brought close to the theoretical limit, given by equation 4.1.

It should be noted that most cryptographic hash functions—even MD5—are due to its tampering
resistance, computationally slower than general-purpose hash functions. However, the MD5

4.2. SERVICE DESCRIPTION BY BLOOM FILTERS 27

process is run only upon advertising and requesting a service and not when service matching is
performed—as matching is done on the filters itself. Further, as shown subsequently, only one
MD5 operation is required to generate input to all k different hash functions.

The Mercury Service discovery design uses MD5 in the following manner: The k hash func-
tions, which constitutes the Bloom filter, are constructed from k groups of each r bits out of the
128 bit hash from the MD5 operation. Any set of sub-bits from an MD5 output can be used as
an input to an independent function. Each of these k functions sets one bit in the filter v.

In Mercury, the hash functions are implemented as shown in Algorithm 1.

Algorithm 1 Calculate Bloom filter value v for service x

Require: x 6= 0
1: a⇐MD5(x)
2: r ⇐ 128/k
3: for i = 0 to k do
4: f ⇐ subbits(r ∗ i, (r ∗ (i + 1))− 1, a)
5: v[f mod m] = 1
6: end for

A thorough evaluation of MD5 as Bloom filter is described in appendix A.4.

4.2.4 Summary

The benefits of using Bloom filters to describe services can be summarized as follows:

• The filter provides an optimized description in terms of number of bits.

• Several service descriptions can be transmitted simultaneously without increasing the
array size.

• Any textual service descriptor—independent of its size—can be added to the filter. This
gives an enormous flexibility.

• As the services are not distributed in a human-legible manner, only the applications that
know the name of the service can utilize it. Hence, ”hidden” resources and services can
be advertised in the network.

With a thorough understanding of the target application, and by correct parameter settings of
the filter, it is feasible to create a Bloom filter based service discovery protocol that is superior
to clear text service descriptor dissemination. By example: A number of 10 arbitrary service
descriptors can be advertised in a 8 byte filter with less than 5% probability of a false positive.
Text or XML-based services require 10-100 times the space.

28 CHAPTER 4. MERCURY - A CROSS-LAYER SERVICE DISCOVERY PROTOCOL

4.3 Protocol Format

Bloom filters are used to describe both advertised and requested services. The Mercury service
discovery protocol is used to distribute the filters using a protocol format that extends the OLSR
routing protocol.

The default control messages employed in OLSR are HELLO and TC and are communicated
using a unified packet format [20]. Each OLSR message transmission can consist of several such
messages piggybacked to the main header (Figure 4.3). OLSR also gives an unique possibility
to disseminate different kinds of information through intermediate nodes even if the nodes do
not support the specific message. Unfamiliar messages will still be forwarded using the default-
forwarding algorithm (Figure 3.4 on page 21).

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Packet Length | Packet Sequence Number |

+-+

| Message Type | Vtime | Message Size |

+-+

| Originator Address |

+-+

| Time To Live | Hop Count | Message Sequence Number |

+-+

| |

: MESSAGE :

| |

+-+

| Message Type | Vtime | Message Size |

|+-+

| Originator Address |

+-+

| Time To Live | Hop Count | Message Sequence Number |

+-+

| |

: MESSAGE :

| |

+-+

: :

Figure 4.3: OLSR packet format, from [20]

Each message in the OLSR transmission has an individual header, which permits special treat-
ment. The originator can for example limit the flood by a diameter in terms of number of hops
or add a certain validity time for the message.

Mercury service discovery integrates with the extensibility feature of the OLSR standard by in-
troducing the Mercury service discovery message (MSD) (Figure 4.4). MSD messages are sent
as the data-portion of the general message format with the message type set to MSD MESSAGE.
The Time To Live field is set to 255, but can be used to perform an expanding ring search for
services in a future version.

4.4. THE DISCOVERY SCHEME 29

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type | Filter Length | Spare |

+-+

| |

: Service Filter :

| |

+-+

Figure 4.4: Mercury service discovery format

The Mercury service discovery message consists of four fields (Figure 4.4):

Type This field specifies that the message carries one out of two message types:

SD REQUEST This indicates that the message is a service discovery request. The ser-
vice filter field consists of one or more services ({1 . . . n}) that the sender node is
requesting.

SD ADVERTISEMENT This indicates that the message is a service discovery adver-
tisement (or service reply). The service filter field consists of all the services ({0 . . . n})
that the sender node is offering.

Filter Length This field gives the size of the service filter (m), counted in bytes. The filter is
limited upwards to 2040 bits.

Spare This field is not used and should be set to 0 by the originator of the message2.

Service filter This field contains the filter describing the messages to be requested or adver-
tised. The filter is encoded as a Bloom filter. The size (in bytes) is given by the field
”Filter Length”.

The filter length is limited upwards to 2040 bits, which is sufficient for most practical purposes3.
It is important to limit the total length of the service discovery message in order to prevent
interruption of regular OLSR control message transmission and to facilitate piggybacking of
several messages to one single header. The number of messages that can be simultaneously
piggybacked to one common OLSR message header is limited by the individual size of the
messages and the Maximum Transmission Unit (MTU) of the underlying medium.

4.4 The discovery scheme

Mercury handles requests and advertisements from two entities (Figure 4.1 on page 24): (i)
Local applications on the node, and (ii) foreign nodes through the ad-hoc network. Each node

2In the ns-2 extension described in chapter 6, the spare field is used to store a message sequence number for
service requests and service replies in order to facilitate statistics.

3Referring to calculations and discussions in appendix A.

30 CHAPTER 4. MERCURY - A CROSS-LAYER SERVICE DISCOVERY PROTOCOL

1 0 0 1 1 0 1 1
0 1 2 3 4 5 6

B
1 1 0 0 0 1 1 1C

7

d

m

”Gateway” = {1,4,5}

”Printer” = {2,4,6}

C
ac

h
e

A
d

v
er

ti
se

d

se
rv

ic
es

0 1 1 0 1 1 1 0
0 1 2 3 4 5 6

A
1 1 0 0 0 1 1 1C

7

d

m

”Application1.0” = {0,6,7}

”File Server” = {3,4,7}

0 1 1 0 1 1 1 0
0 1 2 3 4 5 6

A
1 0 0 1 1 0 1 1B

7

d

m

”VideoCamera” = {1,5,6}

”Application1.0” = {0,6,7}

Mobile Ad hoc Network

Figure 4.5: Each node in the Mobile Ad hoc Network employ two repositories: One repository store
the local services advertised, and one repository—implemented as a attenuated Bloom filter of depth
d—serves as a cache storing advertisements received from foreign nodes.

uses a set of repositories to store the information (Fig. 4.5): Advertised services contains the
different services offered by the node itself. In Foreign services cache, all the services offered
by other nodes are stored. Each entry in the list consists of the Bloom Filter advertised by the
foreign node and its current IP address.

The last repository contains the Requested services which stores all the services requested—
awaiting an incoming advertisement.

4.4.1 Sending service advertisements

All applications that locally connect to Mercury service discovery advertise their own services.
Textual service descriptors from an application are immediately added to a Bloom filter that
contains all the services offered by the given node. Subsequently, an SD ADVERTISEMENT
message is created containing this summary Bloom filter and flooded through the network using
MPR flooding.

4.4.2 Sending service requests

A service request from an upper layer application is immediately queried in the local cache
to check whether any of the foreign nodes has previously advertised the particular service.
If no match in the local cache is found, an SD REQUEST message is created as a Bloom
filter containing all the services the given node is requesting and sent using the MPR flooding
technique.

4.5. ADDITIONAL FEATURES 31

4.4.3 Receiving service advertisements

Each node in the ad-hoc network employs a cache to store incoming service advertisements.
The cache is implemented as an attenuated Bloom filter4. For our purpose, the attenuated Bloom
filter, which constitutes the cache is an array of depth d containing d normal Bloom filters. Each
filter contains the services advertised by one single foreign node.

An advertisement received from a network node is immediately added to (or updates an existing
entry in) the local cache. In addition, incoming service descriptors are immediately matched
against the recent service requests in the repository containing the requested services. If a match
is found, the local application is notified about the successful service discovery.

4.4.4 Receiving service requests

A request received from an external node immediately queries the local cache. If a matching
service is found, the node replies with a service advertisement. The service advertisement is
created as a Bloom filter containing all the services the node is currently advertising, and sent
using the MPR flooding technique.

4.5 Additional features

4.5.1 Path-aware caching

The protocol uses local caching of services advertised by foreign nodes in order to save network
bandwidth and reduce the discovery latency. Local caching may, however, lead to false positive
replies to the overlying application if a service exists in cache even if the node that advertised
the service is not available anymore.5 The cache timeout is therefore a trade-off between fast
service queries and the false positive rate.

To solve this issue, Mercury includes a simple addition to the discovery process that consults the
local routing table for the availability of the node offering the service. The technique is outlined
in Algorithm 2. Without this path-aware construction, false positive replies as a side effect of
caching are more likely to happen. Such false positive replies cause unacceptable delays and
reduce user satisfaction since the upper layer application has to time out on the false request.

4Attenuated Bloom filters were introduced in [76] for use in a probabilistic routing algorithm.
5Solutions relying on service directories suffer from the same problem.

32 CHAPTER 4. MERCURY - A CROSS-LAYER SERVICE DISCOVERY PROTOCOL

Advertise s
s

Use s

s

Withdraw &

Request s
s

s

Use s

s

1

2

3

Advertise s4
5

Figure 4.6: A service s is advertised by A and used by node B. When A withdraws the service, it
immediately requests the service in order to speed up the discovery process for other nodes (here: B).
Luckily, node C then advertises a similar service s which B can put to immediate use.

Algorithm 2 Returns the address of the node offering the service x

1: if LookupLocalCache(x) > 0 then
2: Node← LookupLocalCache(x)
3: if ExistInRoutingTable(Node) then
4: return Node
5: end if
6: end if
7: Node← PerformServiceDiscovery(x)
8: return Node

4.5.2 Service handover

In a fully distributed service oriented network, the service availability is a compound of several
factors. A node dependent of a certain service may fail to reach the service due to mobility,
network congestion or user failures. A failure may also arise if the node offering the service
shuts down the application or resource offered while it is being utilized by a foreign node or
user. If the latter incident happens, the service discovery system is responsible for providing a
service of the same service class from another source (if available) to the affected node in a
timely manner.

The Mercury service discovery protocol supports such a service handover function initiated
when an application withdraws a service.

4.5. ADDITIONAL FEATURES 33

When an application shuts down or for some reason cannot provide a particular service (say s)
anymore, it withdraws the service to inform other nodes immediately that the service is about
to become unavailable. The withdrawal process consists of the following stages:

1. When a service s is locally withdrawn from node A, s is immediately removed from the
advertised services repository. A new service advertisement message is then created as a
Bloom filter containing all the remaining services the node is offering. Notice that even
if this message implicitly contains special information—as the number of advertised ser-
vices just decreased (the number may even be zero)—it is a regular service advertisement
message.

2. Prior to sending this special case advertisement message, node A does a neat operation:
Since any other node may be dependent on s (like node B on figure 4.6), node A creates
a service request message containing service s—even if service s is not of interest for A
per se.

3. Subsequently after creation, the two messages (the service advertisement message and
the service request message) are sent using MPR flooding (step 3 in figure 4.6). The two
messages will be piggybacked6 to the same OLSR message header.

4. Any node providing a service of type s will immediately respond to the service request
(step 4 in figure 4.6). This respond will be received by all nodes in the network.

5. Nodes dependent of service s will then contact the new service provider immediately
(step 5), and the service is effectively handed over.

If the service is not explicit withdrawn using this technique, the following scenario is likely to
happen (with respect to figure 4.6):

1. An application on node B will fail to reach the service s since it is removed from node
A, and the application will eventually time out the connection after time TAPP .

2. When the time TAPP has elapsed, the application will initiate a new service discovery
requesting s. If the local cache entry of s (pointing to A) has not yet timed out (as it will
automatically after time TCACHE), the service discovery protocol will reply with a false
positive telling the application that service s still exists on A even if it does not. A false
positive may also occur if the node A itself is not available anymore. On the other hand,
if path-aware caching is implemented (Algorithm 2 on the preceding page), a new service
discovery is initiated, which will result in a new entry pointing s to C.

Consequently, after withdrawal of s, an application may have to wait as long as TAPP +
TCACHE to regain the service even if a similar service has been available the whole time. This
delay may stop the application from performing its tasks and therefore vastly reduce the user
satisfaction. With the withdrawal scheme outlined above, combined with path aware caching, a
seamless handover is possible.

6Whether they are piggybacked or send separately is dependent on the OLSR queue status and jitter settings.

34 CHAPTER 4. MERCURY - A CROSS-LAYER SERVICE DISCOVERY PROTOCOL

4.6 Summary

The protocol described in this chapter introduces Bloom filters as an efficient way to describe
arbitrary service descriptors. The protocol uses efficient service descriptor dissemination us-
ing MPR flooding. Further, the protocol employs local caching to lower the discovery latency.
Cross-layer techniques are used to minimize the false positive probability when caching is used.
The architecture is fully distributed and supports both proactive and reactive discovery.

The remaining part of this thesis will describe the implementation and evaluation of the protocol
for two different purposes: First, the protocol is implemented as an extension to a network
simulator. Second, the protocol is implemented as a plugin to OLSR for real-world experiments.

Chapter 5

Evaluation methods

Practical wisdom is only to be learned in the school of experience. Precepts and
instruction are useful as far as they go, but, without the discipline of real life, they
remain the nature of theory only.

Samuel Smiles

This chapter addresses the different evaluation techniques used in ad-hoc network analysis.
First, widely used evaluation techniques for contemporary ad-hoc network research are dis-
cussed. Then, the techniques used in this thesis to evaluate Mercury service discovery are intro-
duced.

5.1 Introduction

When designing protocols and algorithms for mobile ad-hoc networks, a major part of the re-
search is concentrated on evaluating and analyzing the design in order to prove that the approach
is sound and hopefully outperforms existing comparable solutions.

Four well-known techniques exist to help evaluation and analysis of ad-hoc network protocols
and algorithms:

• Analytical modeling

• Simulation

• Emulation

• Real-world experiments

Each of the techniques above has its own set of advantages and disadvantages which will now
be discussed briefly.

35

36 CHAPTER 5. EVALUATION METHODS

5.1.1 Analytical modeling

Mathematicians often use analytical models to evaluate certain protocol properties. Analytical
evaluation is inevitable when analyzing the performance of IEEE 802.11 [6], and to examine
probabilistic mobility models [11]. Analytical modeling is also a valuable tool when evaluating
data structures such as Bloom filters (analyzed in [8] and in chapter 4 in this thesis).

Results from analytical modeling are both precise, resource effective and often portable to adja-
cent problems. However, analytical modeling may be hard to understand for fellow researchers
without in-depth knowledge of the field. Therefore, to make analytical models practicable and
possible to interpret and adjust, they are usually limited to one single algorithm or part of a
protocol. Hence, it is rarely feasible to make an analytical model to deal with entire protocol
stacks.

5.1.2 Simulation

Simulations is an established and widely used method to conduct performance evaluation of
network components [48]. Simulators such as ns-2 [92], GloMoSim [91] or OMNeT++ [72]
come with built-in support for the most popular network protocols; e.g. IP, TCP, UDP, Ethernet
and Wi-Fi. The entire protocol stack can thus be simulated at once, enabling validation of new
protocols or algorithms implemented as additional code or scripts.

The major benefits by performing simulations are the repeatability (other researchers may verify
the results) and scalability (simulations can cope with hundreds or even thousands of nodes).

Certain approximations and simplifications are, however, often made when simulation models
are used, which can lead to biased conclusions. Simulations of ad-hoc networks have for ex-
ample been criticized for not using valid mobility models [96] or by relying on one specific
scenario [53]. The network simulator itself may also include errors or assumptions such as
unrealistic wireless medium characteristics [52, 60].

However, despite the many pitfalls and possible errors when performing simulations, perfor-
mance evaluation by simulation is virtually inevitable in order to validate the scaling character-
istic of a protocol design.

5.1.3 Emulation

Using emulation, hardware- and software components originally designed for real-world de-
ployment are combined with simulation components. The purpose of emulation is often to test
protocols and algorithms on real hardware preparing for real-world experiments. The emulator
can work on the physical layer, the MAC layer, or at combinations of different protocol lay-
ers. By changing various parameters such as antenna attenuation and signal propagation, node
movement can be effectively emulated.

Emulations can be done in special test beds as surveyed in [52]. Different emulation test beds are
used to evaluate distinct features of different ad-hoc network components. Even some network
simulators, such as ns-2 [92], can be used as a limited-functionality emulator.

5.2. SUMMARY OF EVALUATION METHODS 37

Analytic

model

Network

simulation

Network

emulation

Real-world

experiment

R
es

o
u

rc
es

Realism

Figure 5.1: The resources, such as time money and human hours, necessary to perform validation of a
protocol or algorithm increases when a high degree of realism is necessary.

Emulation is a valuable tool that is considered a compromise between simulation and real-world
experiments regarding cost, time and repeatability. If software code can be reused, emulation is
a valuable tool to accelerate the switch to real-world experiments.

5.1.4 Real-world experiments

Real-world experiments have recently gained popularity among researchers to validate simu-
lations or analytical models [52]. Real implementations of ad-hoc and mesh networks such as
[56, 28] are paramount to prove that algorithms and protocols work as expected when deployed
in an operational network. In a real-world setting, all components and parts of the system are
fully functional (albeit using an experimental environment). A recent survey of real-world im-
plementations [48] concludes that protocols and algorithms must be evaluated in real-world
settings in order to address all aspects of the design.

The drawback by using real-world experiments is obviously the time, money and human re-
sources required to perform the experiments. Further, results from experiments are often non-
reproducible and hard to validate. It is also difficult to isolate and test one particular behavior
of the investigated protocol.

5.2 Summary of evaluation methods

Even if the credibility of simulations is a subject of discussion [53], most research in the field of
mobile networking today purely rely on simulations to evaluate the characteristics of a protocol
design. This choice is not unfounded: Time, money and human resources increases when mov-
ing from simulation to emulation, and increases vastly when moving to real-world experiments,
as illustrated by Figure 5.1.

Taking into consideration the different benefits by choosing different evaluation methods, re-
searchers should aim to evaluate new designs by creating a test-bed including several methods.

38 CHAPTER 5. EVALUATION METHODS

A new protocol design can for example be evaluated both by a number of initial simulations
and then by implementation and test in a real-world scenario.

5.3 Evaluation techniques for service discovery

Evaluation of a particular service discovery design can be performed using any of the described
methods—assumed that the researcher takes the different benefits and drawbacks into consid-
eration. The choice of method also depends on resources, knowledge, hardware availability, the
service discovery architecture (e.g. which protocol layer it belongs to) and personal preference.

Some service discovery proposals are only evaluated analytically or by an architectural descrip-
tion [69, 97]. Others are purely evaluated by simulations [2, 43, 12, 57, 81] while others are
implemented for small real-world experiments [34, 37, 38].

Different service discovery proposals often take advantage of completely different scenarios in
their simulation and experiments. Hence, studies are difficult to compare. The individual choice
of scenario is, however, not unfounded, as different service discovery solutions are targeted
to completely different applications—and one single evaluation approach is most certainly not
valid for all solutions.

In order to reflect the variety of configurations found in different MANET implementations,
Abou et al. provide a set of benchmark scenarios to evaluate different service discovery propos-
als [1]. Although the evaluation scenarios vary to cover a wide range of uses, all the scenarios
rely on simulations as the one and only validation method and do not consider emulation or
real-world testing.

5.4 Evaluation of Mercury

In this thesis, a combined approach is taken. The Mercury service discovery protocol is im-
plemented both for the network simulator ns-2 and as a plug-in to OLSR. These two imple-
mentations make both simulations and real-world experiments possible. The next two chapters
describe the implementation details of the two different approaches respectively.

Chapter 6

Implementation for ns-2

To write good software you must simultaneously keep two opposing ideas in your
head. You have to be able to think how hard can it be? with one half of your brain
while thinking it will never work with the other.

Paul Graham

In order to verify and evaluate the Mercury service discovery protocol in a variety of scenarios,
network simulations are inevitable. This chapter describes the implementation of the service
discovery protocol integrated with the ns-2 network simulator. Notice that chapter 7 covers
the Mercury implementation for real-world usage. These two implementations are, although
different, similar in many respects. Duplicated information is therefore avoided to a certain
degree, and both chapters should be read in order to get a full understanding of the Mercury
service discovery protocol.

6.1 The ns-2 network simulator

6.1.1 Introduction

Many discrete-event network simulators are suitable for MANET research. Among the most
popular simulators we find GloMoSim [91], OMNeT++ [72] and J-Sim [88]. In this thesis I
choose to use the ns-2 network simulator [92].

The ns-2 simulator can be downloaded from the Internet, free of charge. Hence ns-2 is often
preferred rather than expensive commercial alternatives. The simulator also works on differ-
ent platforms. Although ns-2 is far from platform independent, all that is needed to make the
simulator run is (in theory) a mere computer equipped with a C++ compiler.

Further, the ns-2 simulator is the most popular network simulator today. According to a survey
performed by Kurkowski et al. [53], ns-2 is by far the most used simulator in MANET research:
43.8% of the papers studied in the survey used ns-2, 10% used GloMoSim, and the rest of the
papers used either a less popular commercial simulator or a self developed simulator.

39

40 CHAPTER 6. IMPLEMENTATION FOR NS-2

Simulator script

(tcl)
Trace files

Tcl interpreter

Scheduler

Network components

Animation

Analysis

Figure 6.1: The main components of the ns-2 network simulator.

There are several benefits by using the most popular network simulator: (i) Bugs in the simulator
are more likely to be discovered and corrected. This is extremely important, as it is paramount
that the output from the simulations is valid and can be trusted. (ii) It is more likely to find
MANET researchers familiar with ns-2 than any other network simulator. Most researchers can
therefore verify simulations performed by others. (ii) It is feasible to base a study or part of a
study on research accomplished by other researchers since much work and studies are available.

On the downside, the ns-2 simulator has a steep learning curve and is therefore often considered
hard to use. And due to its command line interface, ns-2 may seem bothersome for researchers
familiar with point-and-click graphical user interfaces.

6.1.2 Functionality

Simulations in ns-2 are user-defined by tcl-scripts. The simulator interprets the scripts at sim-
ulation startup and performs the simulations via a scheduler. The scheduler uses both built-in
and auxiliary network components. The Mercury code described in this chapter is an example
of such an auxiliary component. The simulations result in one or several text files (Figure 6.1).
Those text files can be interpreted by an external program to collect statistics, or be used as
input to an animator program1 in order to visualize the node mobility and the packet flow.

6.2 UM-OLSR

6.2.1 Introduction

The network simulator ns-2 comes with several built-in routing protocols such as AODV, TORA
and DSR. The OLSR routing protocol—which is a fundamental part of the Mercury service
discovery protocol—is, however, not a part of the default ns-2 implementation. A third-party
implementation must therefore be included subsequent to the ns-2 installation. In this thesis, I
choose to take advantage of UM-OLSR [93] from the University of Murcia. The implementation
is extended to include the service discovery messages and algorithms introduced in chapter 4.

1The Network Animator (NAM) [92] is the most common visualization tool for ns-2.

6.3. SERVICE DISCOVERY IMPLEMENTATION 41

In addition to UM-OLSR, there are other available implementations of OLSR such as NR-
LOLSR [67] or INRIA [41]. All of them complies with the rfc [20] and support all core func-
tions. I chose UM-OLSR because the code is freely available and fairly easy both to understand
and to extend. The readability of existing code is important when a new code extension—such
as a cross layer service discovery implementation—have to infiltrate major parts of the existing
code.

6.2.2 Functionality

It is not the intention in this thesis to thoroughly describe every function in UM-OLSR. The
reader is referred to [93, 78] for details about UM-OLSR not given in this chapter. The most
prominent features is, however, explained in order to give an understanding of the tight coupling
between the routing protocol and the service discovery implementation.

As any other protocol extension to ns-2, UM-OLSR acts as an agent listening to all packets of a
certain packet type flowing in the simulator. When a simulated node is about to receive a packet
classified as an OLSR packet2, the packet is handled by UM-OLSR. UM-OLSR then parses the
packet and does appropriate actions as defined in the OLSR standard. UM-OLSR handles its
own timers, enabling the automatic transmission of OLSR control packets.

One important feature of UM-OLSR is that most of the OLSR parameters are configurable
from TCL simulator scripts. I.e., there is no need to recompile the simulator when changing
parameters such as HELLO intervals, TC intervals, willingness etc. This feature is important
when comprehensive simulations examining the effect of variable alteration are performed. The
Mercury implementation extends this feature.

6.3 Service Discovery Implementation

Due to space limitations (and obviously with respect to the readability) the source code of the
entire service discovery implementation is not included in the thesis. Some details about the
code structure plus a small simulation example will be explained in order to give an under-
standing of the implementation.

As illustrated by Figure 6.2 on the following page, the Mercury service discovery implementa-
tion acts as a code extension to UM-OLSR. The extension is made both by altering the original
UM-OLSR code and by adding new source code files to the structure. Using the new code,
UM-OLSR is able to handle auxiliary messages such as service requests and replies as if they
were original OLSR messages.

The Mercury service discovery system consist of two main components: (i) A simple protocol
format (including Bloom filters) defines the service requests and service advertisements. (ii)
Arrays (or repositories) to store various service information.

2Internally in ns-2, OLSR packets are classified as PT OLSR

42 CHAPTER 6. IMPLEMENTATION FOR NS-2

Simulator script

(tcl)

Tcl interpreter

Scheduler

UM-OLSR

Mercury

Figure 6.2: The UM-OLSR implementation extends ns-2 with OLSR routing capabilities. Mercury pro-
vides cross-layer service discovery by taking advantage of UM-OLSR.

6.3.1 Protocol format

Three building blocks are involved in the transmission of service messages: Original ns-2 code,
UM-OLSR, and the Mercury extension. When ns-2 identifies a general OLSR packet, the inter-
nal scheduler calls the function OLSR::recv in UM-OLSR. If the message is considered valid,
the function OLSR::recv_olsr is immediately called. The latter function processes each of
the OLSR messages within the packet in turn. Each of these messages might be either one of
the defined OLSR control messages recognized from the RFC [20] (such as HELLO, TC and
MID) or the Mercury service discovery message as outlined below.

The service discovery format is defined in olsr_pkt.h of the UM-OLSR structure along with
the basic OLSR messages:

typedef struct OLSR_sd {

u_int8_t type_;
u_int8_t filter_length_;
u_int16_t spare_;

inline u_int8_t& type() { return type_;}
// The 16 spare bits used as sequence number in ns-2
inline u_int16_t& seqnum() { return spare_;}

// Service Filter
unsigned char bloomFilter[filter_length_];
inline u_int32_t size() { return filter_length +

sizeof(type_) +
sizeof(spare_) ;}

} OLSR_sd;

As illustrated above, the message format description complies with the format defined in chapter
4 with one exception: The 16 spare bits (which are originally unused) are used as a sequence
number. The intention of the sequence number is to be able to trace one particular service
message (say advertisement) while it traverses through simulated nodes inside ns-2.

6.3. SERVICE DISCOVERY IMPLEMENTATION 43

Own services

Foreign services

Requested services

Repositoriesns-2 core Bloom Filtering

Service functionsOLSR

S
im

u
la

to
r

sc
ri

p
t

(t
cl

)

Message creatorMessage Parser

Figure 6.3: Service discovery functionality is made accessible for ns-2 scripts through the OLSR exten-
sion. All service information used by the simulated network node is stored in the information repositories.

6.3.2 Repositories

The core of the implementation evolves around the storage of service-data in information repos-
itories (Figure 6.3). The basic functionality of the repositories is earlier described in 4.4 on
page 30. The first repository handles services advertised by the local node. The second reposi-
tory stores services advertised by foreign nodes, and a third repository stores the service requests
awaiting reply. All repositories are implemented as a series of C++ Standard Template Library
(STL) vectors.

Figure 6.3 illustrates the relation between core ns-2 functionality, OLSR, message parsing, mes-
sage creation, Bloom filters and repositories. The core of the Mercury service discovery is the
service functions, which act as the glue that connects all the different components.

6.3.3 Service functions

The service functions make it possible for the ns-2 script to invoke service discovery in the
simulated network. If one of the nodes participating in an ns-2 simulation (say node 7) wishes
to advertise the service ”Map-server” at time 0.0, the following command is entered in the
tcl-script:

$ns_ at 0.0 "[7 agent 255] SD_ADD_SERVICE Map-server"

Similarly, if node 6 wishes to request the very same service at time 20.0, the following command
is entered:

$ns_ at 20.0 "[6 agent 255] SD_REQUEST_SERVICE Map-server"

The tcl commands above indicates that implementing a simulation script with Mercury ser-
vice discovery is rather straightforward. The next section describes a complete (albeit simple)
simulation.

44 CHAPTER 6. IMPLEMENTATION FOR NS-2

0 1 2

temp-sensor
temp-sensor

IR-sensor

80m 80m

Figure 6.4: A simple OLSR network. Node 0 and 1 offers services, while node 2 requests services.

6.4 Example simulation

The scenario illustrated by Figure 6.4 is used as a basis to demonstrate how a simple service dis-
covery simulation can be created. It is assumed that the reader possesses base knowledge about
ns-2 and is familiar with tcl-scripting. Nevertheless, any reader familiar with computer pro-
gramming should be able to follow the example. The entire example is attached in appendix B
on page 97, and the most prominent parts of the example will be described subsequently:

6.4.1 Configuring Mercury

Mercury-enabled network nodes can be configured using simple TCL-commands:

Agent/OLSR set sd_proactive_ false
Agent/OLSR set sd_ival_ 10
Agent/OLSR set sd_cache_ 300
Agent/OLSR set sd_numhash_ 4

In the first line in the above listing, we define that Mercury will operate reactively. The other
operation mode is proactively behavior. Proactively in this context means that available services
will be advertised within intervals given by sd_ival_. The default (and preferred) operation
mode is, however, the reactive mode. Even if proactive mode may yield lower discovery delays
compared to reactive mode, it will certainly lead to increased data traffic. A sort of hybrid mode
is enabled by setting a high sd_ival_ and enable proactive mode.

The third line defines the cache timeout (in seconds). The fourth and last line define the number
of hash functions to be used by the Bloom filter algorithm (discussed in 4.2.2 on page 26).

6.4.2 Define topology

The network topology is defined by a simple set of commands defining the X , Y and Z coor-
dinates within the boundaries of the simulated area:

$node_(0) set X_ 100.00
$node_(0) set Y_ 100.00
$node_(0) set Z_ 0.0000
$node_(1) set X_ 180.00
$node_(1) set Y_ 100.00

6.4. EXAMPLE SIMULATION 45

$node_(1) set Z_ 0.0000
$node_(2) set X_ 260.00
$node_(2) set Y_ 100.00
$node_(2) set Z_ 0.0000

The above excerpt defines the location of the three nodes according to the setup illustrated by
Figure 6.4. The transmission range is set to 100m (by setting the RXThresh_, see appendix B
on page 97 for details). Traffic between node 0 and node 2 is OLSR routed through node 1.

6.4.3 Define service access

The service advertisements and requests are defined according to the definition in 6.3.3:

$ns_ at 1.0 "[$node_(0) agent 255] SD_ADD_SERVICE temp-sensor"
$ns_ at 2.0 "[$node_(1) agent 255] SD_ADD_SERVICE temp-sensor"
$ns_ at 10.0 "[$node_(1) agent 255] SD_ADD_SERVICE IR-sensor"
$ns_ at 20.0 "[$node_(2) agent 255] SD_REQUEST_SERVICE temp-sensor"
$ns_ at 20.1 "[$node_(2) agent 255] SD_REQUEST_SERVICE IR-sensor"

Using the simple commands above, the service ”temp-sensor” is advertised by both node 0 and
1, and the service ”IR-sensor” is advertised by node 1 alone. Node 2 requests both services. The
first request occurs at time 20.0 and the second at 20.1.

With most of the simulation script explained, we are now ready to run the simulation.

6.4.4 Running the simulation

Assumed that ns-2 and the UM-OLSR protocol are installed properly (see [92, 93]), and that
the Mercury service discovery extension is a part of the source tree, the simulation is run by
typing ns sd.tcl outputfile.tr. After a successful run, the trace file outputfile.tr
can be examined.

6.4.5 Examining the trace file

Trace files from ns-2 simulations tend to be quite large. Even the small simulation in this exam-
ple generates a trace file of 915 lines. Using a simple grep3, we can isolate the entries containing
the interesting service discovery information. Notice that superfluous information irrelevant for
our purpose is excluded from the traces for the sake of readability.

Adding service descriptors

The first service discovery related information in the trace file is the service advertisement done
by node 0 and 1. We can observe that the services are successfully added to the repositories of
each of the nodes.

3Referring to the Unix command grep which finds text within a file.

46 CHAPTER 6. IMPLEMENTATION FOR NS-2

sd 1.0 0 SD_ADD_SERVICE temp-sensor
sd 2.0 1 SD_ADD_SERVICE temp-sensor
sd 10.0 1 SD_ADD_SERVICE IR-sensor

Requesting the first service

At time 20.0, node 2 requests the first service, namely ”temp-service”:

sd 20.0 _2_ SD_REQUEST_SERVICE temp-sensor
sd 20.0 _2_ SERVICE_NOTFOUNDINCACHE temp-sensor 0 0 2

Notice that since Mercury is running in pure reactive mode, node 2 can not find the service
”temp-sensor” in the local cache (foreign service repository on Figure 6.3). Node 2 therefore
immediately sends a service request containing a Bloom filter hash of the service descriptor.

s 20.000000000 _2_ RTR --- 39 OLSR 64 [[SD REQ 0 2 0 12]]

The above trace line tells that a service request (SD REQ) is sent (marked with an ”s”) as part
of an OLSR message. Let us examine what happens next:

r 20.001088267 _1_ RTR --- 39 OLSR 64 [[SD REQ 0 2 0 12]]
sd 20.0010883 _1_ SERVICEFOUND

Observe that the request is received by node 1 (marked with an ”r”), which immediately searches
through its own advertised services (Own service repository on Figure 6.3), and then prints out
that the service is found. This information is then immediately sent to all network nodes:

s 20.001088267 _1_ RTR --- 40 OLSR 96 [[SD ADV 0 1 0 15][SD REQ 0 2 1 12]]

Notice that the above message contains two service messages piggybacked into one single
OLSR message: The first part of the message (SD ADV) is the positive respond to the query.
The second part is the original query (SD REQ) from node 1 which is MPR forwarded. Node 0
will then receive the forwarded message:

r 20.002492533 _0_ RTR --- 40 OLSR 96 [[SD ADV 0 1 0 15][SD REQ 0 2 1 12]]
sd 20.0024925 _0_ SERVICEFOUND

Node 1 will, similarly as node 0, search through its own advertised services and send a positive
feedback to the request. Shortly thereafter, node 2 receives the positive reply from node 1:

r 20.002492533 _2_ RTR --- 40 OLSR 96 [[SD ADV 0 1 0 15][SD REQ 0 2 1 12]]
sd 20.0024925 _2_ SERVICETRUEPOSITIVE temp-sensor 0

As we can see from the above two trace lines, the advertisement message from node is now
successfully received at node 2, and the service discovery process is completed. Notice that the
entire process took place in less than 2.5ms.

6.5. SUMMARY 47

Requesting the second service

In the simulation script, we defined that node 2 should initiate a second discovery for the ser-
vice ”IR-sensor” after 20.1 seconds. The trace file below presents one prominent feature of the
Mercury service discovery, namely the caching:

sd 20.1 _2_ SD_REQUEST_SERVICE IR-sensor
sd 20.100000000 _2_ SERVICEFOUND_CACHE IR-sensor 1 1 0 1 2

As implied by the trace lines above: The first service discovery process did not only yield a
successful discovery of the service ”temp-service”. The reply from node 1 also contained all
the services offered by node 1. Hence, the second service request performed by node 2 at time
20.1 resulted in a mere cache-lookup yielding a discovery time of 0.0s.

6.5 Summary

In this chapter, the implementation of the Mercury service discovery protocol for the network
simulator ns-2 is explained, and a simple simulation is described. This implementation is used
for all subsequent simulations in this thesis. No solution should, however, exist solely in a simu-
lator, and the work in the next chapter brings the protocol closer towards real-world deployment.

48 CHAPTER 6. IMPLEMENTATION FOR NS-2

Chapter 7

Implementation for olsrd

Talk is cheap. Show me the code.

Linus Torvalds

This chapter describes the implementation of Mercury Service Discovery protocol aimed for
real-life usage. The olsrd routing daemon and its plugin interface is introduced, and the Mercury
Service Discovery plugin to olsrd is presented.

7.1 Overview

The proposed cross-layer design requires a tight coupling between the service discovery pro-
tocol and the OLSR routing protocol. For this reason, there is a need for a complete and well-
written OLSR implementation flexible enough to cope with additional code extensions. Differ-
ent OLSR implementations exist and can be used in such a test and development stage. Most of
the implementations are open source and can be downloaded free of charge, such as nrlolsr [67]
and OOLSR [41]. The most popular and well documented implementation today is, however,
the UniK olsrd project [71] and the Mercury service discovery implementation will be based on
this implementation. I refer to olsrd as the implementation, and I use the uppercase abbreviation
OLSR to specify the protocol.

7.2 The UniK olsrd daemon

The olsrd project was originally based on an open source project from INRIA, but was later
heavily modified as a part of a masters thesis [89] at University Graduate Center at Kjeller
(UniK). During the project development, the source was redesigned to become fully compliant
to RFC 3626 [20] and became available on the Internet [71]. The project is now embraced by

49

50 CHAPTER 7. IMPLEMENTATION FOR OLSRD

Socket

Parser

OLSR Packet

Parser
Information repositories Scheduler

Registered

Sockets
Parse Functions Duplicate Table

Timeout

Generate

Forward

In
p
u
t

O
u
tp

u
t

Figure 7.1: OLSRd basic functionality, based on a figure in [89]

the open source community and thanks to a lot of researchers and engineers, olsrd is among the
most popular implementations of the OLSR routing protocol.

The olsrd developers are very active and are continuously updating olsrd with new improve-
ments and extensions. The latest version of olsrd now runs on multiple platforms, such as Linux,
Windows, OS X, and iPhone. Both source code and binaries can be found on the web site [71]
available for free download.

Olsrd is now used in several test beds and real networks such as to create Internet access in rural
areas [56] or in cities like Berlin and Rome [28, 95]. Olsrd is also used by Norwegian Defence
Research Establishment (FFI) to provide communication in the digitized battlefield [4].

7.2.1 Core functionality

Even if olsrd is rather complex, the core functionality is kept simple and is easy to understand.
Figure 7.1 outlines the basic parts of olsrd and their relation.

All incoming data to the olsrd daemon is handled by the socket parser. This entity can listen to
multiple network sockets, which can be added in runtime. One socket is maintained per network
interface running olsrd. For each of these sockets, a special parser function is registered. The
parser function is called whenever data is available on the particular socket. Special parser
functions for specific message types can be registered and added dynamically. If no function is
registered to handle a message type, the packet parser forwards the message according to the
default forwarding algorithm in OLSR.

As OLSR is a table driven routing protocol, updated information is kept in tables, or information
repositories. All information about the current state of the network and quality of links are
described in these tables. The different parser functions both update the information in the tables
and makes use of stored information to process messages. To avoid duplicated packets, the
forwarding function relies on the duplicate table, which stores all recently processed packets.

The event scheduler in olsrd runs different registered tasks at given intervals. If a certain packet
should be transmitted within a defined time interval, a dedicated function can be registered with
the scheduler.

7.3. OLSRD PLUGINS 51

7.2.2 Configuration

Olsrd is fairly easy both to configure and run. The daemon uses a human-legible configuration
file, which is read by the process at startup. The configuration file defines the basic behavior of
olsrd regarding which network interfaces should run OLSR, different message emission inter-
vals to use, auxiliary plugins to load, and other parameters according to the RFC, such as link
hysteresis and MPR willingness.

Altering the parameters in the configuration may not, however, cover all possible special modes
of operation. The olsrd implementation is based on open source C code, which is relatively
easy to understand, alter and extend for any experienced software developer. The most promi-
nent feature of the olsrd implementation is, however, the plugin interface. The plugin interface
enables extension of the protocol without altering the core code of olsrd. The plugin interface is
a major part of the implementation, and perhaps one of the primary reasons for the popularity
of the olsrd daemon.

7.3 Olsrd plugins

The olsrd implementation supports dynamically loaded libraries for auxiliary functions. These
extensions are enabled using the generic plugin interface [90]. Via the plugin interface, a third-
party programmer can create extensions to adjust, extend, or exploit different functionality in
olsrd as shown in figure 7.2. Such extensions can for example utilize the scheduler inside the
daemon to invoke new functions on timed events, access different variables, or even altering
the routing table. By using special parser functions, the plugin can alter both incoming and
outgoing messages. For a software programmer, the plugin interface gives access to intercept or
change current operation of OLSR using a plugin instead of altering the inner code structure.

Olsrd plugins can be categorized in two groups; (i) plugins that extend or change functionality
in OLSR itself, and (ii) plugins that exploit the MPR flooding function in OLSR to disseminate
its own message types.

The first category of plugins can be used to extend OLSR to provide QoS routing, to enable
secure routing, or to extend the routing daemon to include link layer information. The second
category of plugins can be used by an upper layer application in order to extend OLSR with
auxiliary message types, which can be parsed by the plugin. Auxiliary messages can be used
for a variety of purposes: Provide name service in an ad-hoc network, distribution of encryption
keys or dissemination of service discovery information.

The plugin interface to olsrd gives a MANET developer some major advantages:

1. The interface provides backward compatibility—there is no need to change code in olsrd
itself when adding auxiliary functions.

2. Since the original olsrd code is not touched, the plugin can be licensed under any term.

3. The plugin can theoretically be implemented in any programming language.

4. The default forwarding algorithm in OLSR will forward unknown packet types according
to the MPR scheme.

52 CHAPTER 7. IMPLEMENTATION FOR OLSRD

Socket

Parser

OLSR Packet

Parser
Information repositories Scheduler

Registered

Sockets
Parse Functions Duplicate Table

Timeout

Generate

Forward

In
p

u
t

O
u

tp
u

t

Plugin repositories

Multi-purpose

interface

Inter-Process

communication

Figure 7.2: An olsrd plugin can intercept or change current operation of OLSR. Figure based on [89]

A great variety of different plugins exist. Some are created by the olsrd team and are included in
the implementation found on the web site. Other plugins are part of different research projects
and are described in papers, but are not part of the olsrd code. The list presents some of the
available plugins:

• Basic Multicast Forwarding Plugin (BMF). The Basic Multicast Forwarding Plugin floods
IP-multicast and IP-broadcast traffic over an olsrd network. In order to optimize the flood-
ing of multicast and local broadcast packets to all the hosts in the network, the Multi-Point
Relays (MPRs) as identified by the OLSR protocol are used. A history of packets is main-
tained in order to prevent broadcast storms. Only packets that are classified as new to the
process are forwarded. The plugin and its source can be downloaded as a part of the olsrd
source [71].

• HTTP Mini-server Plugin. This plugin implements a small HTTP server that can be ac-
cessed from a browser. The plugin returns a HTML formatted page, which contains de-
tailed process information from olsrd. The information provided includes detailed link
status for all links and neighbors, all olsrd routes in the kernel, and local configuration.
The plugin is included as a part of the olsrd source [71].

• Power Status Plugin. The Power Status Plugin gathers power information from the battery
of a mobile node, and distributes the information to other olsrd-enabled nodes in the
network. The plugin is described in [90], and although it is not compatible with the latest
versions of olsrd, it still works as a good basis when designing new plugins.

• Nameservice Plugin. This plugin is a simple DNS replacement for OLSR networks and

7.4. SERVICE DISCOVERY AS A PLUGIN TO OLSRD 53

distributes host name information over OLSR. Every node that runs the plugin can an-
nounce different name-IP couplings via the plugin. These names can be its own host
name, names of other IP addresses associated with HNA, and names resolved from an
Internet DNS. The plugin is included as a part of the olsrd source [71].

• Dynamic Internet Gateway Plugin. This plugin checks dynamically whether the local
node has an Internet connection or not. The plugin updates the local HNA information
announced by the local node, facilitating Internet connectivity for other olsrd nodes in the
network. The plugin is described in [90].

• Encap Plugin. This plugin includes a route management protocol for multi-homed wire-
less mobile nodes. The plugin facilitates low handover time when a mobile node switches
between local access point or Internet Gateways by taking use of HNA information an-
nounced by the gateway nodes [22].

The above list effectively illustrates the variety of plugins that can be created to extend core
OLSR functionality. The rest of this chapter will introduce a new member to this list—the
Mercury Service Discovery Plugin.

7.4 Service Discovery as a plugin to olsrd

There are several advantages by implementing service discovery as a plugin to olsrd:

• MPR Flooding. Multicast in MANETs is still at the research stage (no standard is defined)
and is thus an open issue. By using the previously defined cross-layer design and take
advantage of message flooding using the Multi-Point Relays (MPRs), we have an efficient
message dissemination scheme available without the use of IP multicast.

• Piggybacking. The service discovery message is defined as a separate message type, in
addition to the built-in message types such as HELLO, MID, TC and HNA. A service
discovery request may therefore be transmitted alone, or be piggybacked on one of the
built-in message types. When piggybacking, bandwidth is saved since several messages
are transmitted encapsulated in one single IP/UDP header.

• Transparency. Using the unified OLSR packet format, the OLSR standard provides ex-
tensibility of the protocol without breaking backwards compatibility. This feature gives
a unique possibility to disseminate service discovery information transparent through in-
termediate nodes even if the nodes do not support the service discovery extension.

• Availability to OLSR repositories. As outlined in Figure 7.2, an olsrd-plugin has access to
all variables and repositories inside olsrd. We can take advantage of this feature for several
purposes: Our path-aware algorithm can exploit the local routing table when services are
requested locally to avoid false positive lookups in the cache. Furthermore, the plugin can
utilize the table of symmetric neighbors to make sure that no services are added to the
local cache unless the node providing the service has a link considered stable by OLSR.
In addition, other useful functions such as memory cleanup and socket handling in olsrd

54 CHAPTER 7. IMPLEMENTATION FOR OLSRD

are available. The use of these existing and well proven functions avoids duplication of
similar tasks, it reduces the complexity of the plugin implementation, and enhances both
readability and stability.

7.4.1 Implementation overview

Even if the olsrd daemon itself is programmed in C, an auxiliary plugin can be written in any
language that can be compiled to a dynamic loadable library. The Mercury Service Discovery
Plugin is implemented—as the daemon—in C. There are two reasons for the choice of C as the
programming language: (i) In order to make the interface to olsrd clean and easy to understand,
C was chosen to avoid conversions and type casts between two different languages, and (ii) C
has very few dependencies, and should therefore be easy to port to other platforms and operating
systems in the future.

Even if the entire source code for the service discovery plugin is rather compact, and consists
of less than 2000 lines, it is not included in this document but is available at [27]. Essential
details in the code are explained in the subsequent sections. The implementation consist of a
/src folder containing the following files:

mercury_plugin.h
mercury_plugin.c
bloom.c
bloom.h
Makefile

The first two files in the listing contain all service discovery functionality. The next two files
contain the bloom filter algorithms, and can easily be replaced with other data structures if
desired. The source should be placed in the /lib folder of the olsrd source. Building and
installation is done by running the Makefile:

:˜/src$ make
:˜/src$ make install

The commands above compiles the Service Discovery code as a shared object:
olsrd_mercury.so.x.y, and places it under /usr/lib. The plugin is loaded by defining
the library in the configuration file /etc/olsrd.conf according to [89].

7.4.2 Plugin architecture

The Mercury Service Discovery Plugin and the peripheral connections are shown in Figure 7.3.
The main building blocks of the plugin are:

• Repositories: The repositories are tables that store both own services that are advertised,
requested services, and foreign services advertised by other nodes.

7.4. SERVICE DISCOVERY AS A PLUGIN TO OLSRD 55

In
te

r-
p
ro

ce
ss

 c
o

m
m

u
n

ic
at

io
n

A
p
p
li

ca
ti

o
n

Discover

Withdraw

Advertise

Own services

Foreign services

Requested services

Repositories S
erv

ice ad
v
ertisem

en
ts an

d
 req

u
ests

Parser / Creator

Figure 7.3: The main building blocks of the Mercury Service Discovery Plugin

• Packet parser and creator: The message parser function intercepts incoming Service Dis-
covery Messages, while a creator function creates and prepares service discovery mes-
sages for transmission.

• Inter-Process Communication: Inter-process Communication (IPC) is a way to provide
two-way communication to an upper-layer application.

• Interface to olsrd: Different interfaces to olsrd provide functionality to load and shut
down the plugin, transmit packages, and deal with sockets.

• Service access functions: The service access functions deal with service advertisement
and request. Those functions also perform sub-tasks using either IPC to applications,
interfaces in olsrd or by accessing the local repositories.

7.4.3 Repositories

The repositories are lists that store certain information. Inside the service discovery plugin,
there are three such repositories:

Own services In this list, all the different services offered by the local node are stored. The
service descriptors are stored as plain text. This makes it possible to search or withdraw
services by their service name. One single entry in the list exists per service offered.
Upon sending a service advertisement, all the service descriptors in the list are encoded
in one single Bloom filter. The services in this list persist until an upper-layer application
withdraws the service. When the olsrd daemon is restarted, the list is cleared.

Foreign services In this list, all the services offered by other nodes are stored. Each entry
consists of the Bloom filter advertised by a foreign node and its current IP address.

56 CHAPTER 7. IMPLEMENTATION FOR OLSRD

1 2 n-1 n

Figure 7.4: A two-way circular linked list. Every entry in the list holds two pointers, and the last entry in
the list points to the base element.

0

1

2

n

H
as

h
ed

 i
n

d
ex

es

Two-way linked lists

Figure 7.5: An initial hash value indexes one of n two-way circular linked lists.

Requested services This list stores all the services this node is requesting. If a successful ser-
vice reply is not received within a predefined time, the request eventually times out and
the list entry will be deleted.

All repositories are implemented as two-way circular linked lists. Every entry in these lists holds
two pointers: a pointer to the previous data element (in this case service descriptor or node), and
a pointer to the next element. The last entry in the list points to the base element, which makes
the list circular (Figure 7.4).

The benefit by this data structure is that the order of the linked elements can be different from
the order that the data elements are stored in memory. This allows the lists to be traversed in any
order, and permits insertion and removal of entries at any point in the list. Another advantage
of a linked list in contrast to a conventional array is that entries can be inserted indefinitely. An
array will eventually either fill up or need to be resized.

The repository containing the list of foreign nodes could be as large as the total number of
nodes in the network. As an effect, a standard linked list may be cumbersome to search due to
its length. To solve this issue, the list of foreign services is implemented as an array of several
two-way circular linked lists. The root element of each linked list is an element of an array
where the index is a hash value of the IP-address of the service provider (Figure 7.5).

7.4. SERVICE DISCOVERY AS A PLUGIN TO OLSRD 57

7.4.4 Packet parser

The parser system consists of three components:

• A definition of the Mercury service discovery message.

• A function to create messages.

• A function to parse incoming messages.

The definition of the Mercury service discovery message is illustrated in Figure 4.4 on page 29
and serves as a base for the implementation. In the plugin, this message is defined as a simple
C-struct:

struct mercurymsg
{

olsr_u8_t type;
olsr_u8_t length;
olsr_u16_t spare;
unsigned char filter[FILTER_LENGTH];

};

The special olsr datatypes such as olsr_u8_t and olsr_u16_ct are defined in olsr_types.h
The type of the message can be either MSD_ADVERTISEMENT, which indicates a message con-
taining one or more service advertisements, or MSD_REQUEST, which means that the message
contains one or more service requests.

In order to inform olsrd that a new message is defined, a message parsing function is registered
with olsrd when the plugin is initialized:

olsr_parser_add_function(&olsr_parser, MERCURY_PACKET, 1);

When a new service discovery message is received by olsrd, this is identified uniquely by the
Message Type field set to MERCURY_PACKET. Olsrd then calls the plugin function olsr_parser
By doing this, olsrd hands over the responsibility to parse the message to the plugin.

void
olsr_parser(union olsr_message *m,

struct interface *in_if,
union olsr_ip_addr *ipaddr)

Prior to message parsing, the plugin verifies that the originator of the message is considered a
symmetric neighbor by calling a checkup function in olsrd. The plugin also verifies that this
packet is not previously processed by checking the duplicate table in olsrd:

if(check_neighbor_link(ipaddr) != SYM_LINK) {
return;

}
if(olsr_check_dup_table_proc(&originator, seqno){

process_message(m);
}

58 CHAPTER 7. IMPLEMENTATION FOR OLSRD

When all parsing and handling of the service discovery message is performed, the message is
forwarded using MPR flooding:

olsr_forward_message(m, &originator, seqno, in_if, ipaddr);

If the message is considered valid, the message is processed by one of the service access func-
tions described subsequently.

7.4.5 Service access functions

The service access functions handles requests and advertisements both from the external net-
work via olsrd, and from applications running locally on the node—connected via Inter-process
communication (described in section 7.4.6). The access functions controls the internal reposito-
ries by updating and deleting entries when needed. As service descriptors may be handled either
as clear text or as a Bloom filter, the following vocabulary is established as a reference: A ser-
vice request is named SR, a service advertisement is named SA. One or more service requests
and advertisements encoded using Bloom filters are named B(SR) and B(SA) respectively.

Incoming service messages are handled by one of two functions based on the type-field of the
message:

• Advertisements: An advertisement B(SA) received from a network node is immediately
added to or updates an existing entry in the ”Foreign services” repository. If B(SA)
matches one of the entries in the ”Requested services” repository, a message is sent to
all IPC connected applications.

• Requests: A request B(SR) received from an external node immediately query the ”Own
services” repository. If a matching service S is found, the node replies with a service
advertisement. A service advertisement B(SA) is created as a Bloom filter containing all
the services in the ”Own services” repository and sent.

Both incoming requests and advertisements are, regardless of their content, forwarded using
the MPR flooding technique. In order to avoid loops, the plugin verifies that this packet is not
previously processed by checking the duplicate table in olsrd.

Requests from local applications are received via Inter-process communication. The plugin sup-
ports three different requests:

• Service Request: A service request SR is immediately hashed as a Bloom filter to B(SR).
Then the filter is queried in the ”Foreign services” repository cache. If no match in this
repository is found, the service request SR is matched against the ”Requested services”
repository to check wether a request is recently performed regarding the same service
descriptor. If this is not the case, the service descriptor S is added to the ”Requested
services” repository. Then, a new Service Request message B(SR) is created as a Bloom
filter containing all the services in the ”Requested services” repository, and sent.

• Service Advertisement: When an application is advertising a service, the service descrip-
tor S is added to the ”Own services” repository. Then a service advertisement B(SA) is

7.4. SERVICE DISCOVERY AS A PLUGIN TO OLSRD 59

Application 1 Application 2 Application n

Inter-process

Communication

Plugin interface

MPR forwarding

Figure 7.6: A number of applications, n, are connected to the plugin. Requests and advertisements are
disseminated using MPR forwarding in OLSR.

created as a Bloom filter containing all the services in the ”Own services” repository, and
sent.

• Service Withdrawal: When an application shuts down or for some reason can not provide
a service S anymore, it shall withdraw the service. The service descriptor S is then re-
moved from the ”Own services” repository. Subsequently, a new service advertisement
B(SA) is created as a Bloom filter containing all the remaining services in the ”Own
services” repository, and sent using the MPR flooding technique. Notice that the adver-
tisement is sent even if the ”Own services” repository is empty and the resulting Bloom
filter is NULL. To speed up the service discovery process for nodes dependent of the re-
cently withdrawn service S, a service request message B(SR) containing a Bloom filter
of the withdrawn service is created and immediately sent, piggybacked to B(SA). As a
result of this technique, any node providing a service S will respond to the request B(SR)
and nodes dependent of S will contact the new service provider immediately.

7.4.6 Inter-process communication

To allow communication between the plugin and user applications, an Inter-process commu-
nication function (IPC) is created. The IPC communication is enabled using TCP/IP via the
loopback interface. The plugin allows several simultaneous applications to connect via IPC as
illustrated in Figure 7.6. The number of simultaneous applications that can connect to the plugin

60 CHAPTER 7. IMPLEMENTATION FOR OLSRD

is limited by MAX_IPC_CLIENTS defined in mercury_plugin.c.

A connection to the plugin is established simply by creating a TCP socket to localhost (usu-
ally 127.0.0.1) on the port number IPC_PORT defined in mercury_plugin.c. The Inter-
process Communication interface can be tested using a telnet client, provided by most operating
systems. Given that the IPC_PORT is 8888, the connection is done by typing:

telnet localhost 8888

When an IPC-socket connection is established, the IPC interface provides a few simple text
based commands, which the application can put to use. The default setup of a complete com-
mand is:

<Command> <ServiceName> <Attribute>

The different commands facilitate advertisement, withdrawal and request of services:

Advertisement
A service advertisement is performed by giving the command: ADVR <Service>. An ex-
ample of usage: If a chat-application with the name ”Chatclient” starts, it advertises itself to
the network. Assuming that the IPC-socket is established, this is done simply by giving the
command:

ADVR Chatclient

Withdrawal
When an application either shuts down or for some other reason cannot provide the service any-
more, it withdraws the service. This is done simply by giving the command: WTDR <Service>.
In our chat client example, the command is:

WTDR Chatclient

Request
A service request is performed by giving the command: RQST <Service> [ANY,ALL]. If
an application want to retrieve the IP-addresses of one of the printers in the network, it sends
the following command: RQST Printer ANY. On the other hand, if the application wants to
retrieve all of the chat client in the network, it uses the following command:

RQST Chatclient ALL.

Output
The plugin also has the ability to provide data to the application. The plugin will respond with
OK if one of the commands is understood and action is performed. If a requested service is found
in the network, the plugin will respond with:

SERVICE FOUND: <Service> AT <IP> <Time>.

Say that the application has asked for one of the printers in the network, like the above example,
the reply may look like this:

SERVICE FOUND: Printer AT 192.168.0.4 (0.131s)

7.4. SERVICE DISCOVERY AS A PLUGIN TO OLSRD 61

7.4.7 Summary

This chapter has described the implementation of the Mercury Service Discovery protocol
aimed for real-life usage. The implementation is made using the plugin interface of olsrd and is
available at [27]. The Mercury plugin can be used in a wide range of applications. Appendix C
shows how SIP user agents can be discovered in an ad-hoc network using the Mercury plugin.

62 CHAPTER 7. IMPLEMENTATION FOR OLSRD

Chapter 8

Simulation methods

Two paradoxes are better than one; they may even suggest a solution.

Edward Teller

This chapter provides background information and addresses some pitfalls and frequent source
of errors when simulating mobile ad-hoc networks. Finally, the chapter explains my choice of
simulation and validation models.

8.1 Performing valid measurements

The key questions to answer when evaluating a service discovery protocol (or any ad-hoc net-
work protocol) are:

• What to measure?

• How to measure?

• How to evaluate the measurements?

The questions above must be addressed prior to any simulation study. Also, in order to measure
the behavior of any protocol by simulation, valid scenarios must be established. Scenarios must
be realistic in order to cover the future use of the protocol, but must be kept simple to be enable
to isolate and test one particular feature at a time.

The features of Mercury that is tested in this thesis are:

Bloom filter The implementation of the Bloom filter is tested in order to verify that the imple-
mentation behaves according to the mathematic theory.

Caching The effect of caching is examined to measure performance gains and to detect any
side effects.

63

64 CHAPTER 8. SIMULATION METHODS

Delay The delay (the time consumed) to perform service discovery in different networks is
evaluated.

Overhead The overhead (the number of bytes) induced by the service discovery process is
examined using different network topologies.

In order to measure the above parameters one can take advantage of both static and mobile
scenarios. Static scenarios are easy to set up and to repeat and are feasible when distinct fea-
tures of the protocol are measured. Scenarios including node mobility are more realistic. As the
employed mobility model greatly affects the performance of the simulated protocol, a realistic
model must be used.

8.2 Obtain a realistic dynamic topology

In order to obtain confident results when simulating new protocols and algorithms for ad-hoc
networks, it is imperative to use a mobility model that is suitable for the target application.
Huang et al. have addressed this point by creating mobility particular to simulate first responders
at an incident scene [40]. Additionally, T. Camp et al. have proved that the performance of an
ad-hoc network protocol can vary significantly with different mobility models [11].

Researchers agree that only by using an appropriate mobility model that closely matches the
real world scenario, one can evaluate and determine the effects of a given protocol. Two main
approaches exist when choosing mobility models for mobile network simulation:

• To use traces or tracks from real-world patterns.

• To take advantage of synthetic models.

Traces can be collected by equipping people and vehicles with GPS-loggers when performing
a realistic operation. Even if traces provide more accurate information for a given scenario
than synthetic models, they are seldom used in ad-hoc network research. In [42], real traces
are collected and used to simulate a vehicular ad-hoc network. M. Kim et al. provide a way to
collect traces for simulations by gathering logs from Wi-Fi access points [49].

There are obvious reasons for the lack of published results using real-world tracks: First, traces
are hard and expensive to obtain—especially for a large number of nodes. Second, it may be
difficult to foresee a specific scenario, and thus impossible to collect valid traces. In such cases,
synthetic models are crucial. Several synthetic models exist to simulate ad-hoc networks such
as random walk, random waypoint, random direction and probabilistic random walk [11].

In order to evaluate the Mercury service discovery protocol, I have used both a synthetic model
and real traces. This chapter compares two different routing protocols using Random Waypoint
Mobility Model as an example of the most popular synthetic model, plus tracks collected from
a real-world exercise. The reason for doing this initial comparison is twofold:

• Examine how the chosen mobility model influences the performance of the routing pro-
tocol.

8.2. OBTAIN A REALISTIC DYNAMIC TOPOLOGY 65

Figure 8.1: Traveling pattern of 22 mobile nodes following Random Waypoint Mobility Model.

• Obtain an understanding of the effects of choosing one routing protocol in favor of an-
other. Mercury is a cross layer service discovery protocol, and its performance is therefore
bound to follow the performance of the routing protocol.

The results in this chapter are used as a base to create valid scenarios for following tests of the
Mercury service discovery protocol. The results also provide important knowledge for validat-
ing subsequent simulations.

8.2.1 Comparing synthetic mobility models and real-world traces

I created a simple scenario to compare the synthetic mobility model and real-world traces.
The traces were collected from a tactical exercise with real soldiers. The exercise included 22
soldiers divided in three teams that first moved independently, and then they collaborated. The
exercise area was 530 x 240 m, and included both forestry and a village area. All subsequent
simulations are performed using the same area size and the same number of nodes.

Notice that two distinct features separate real-world tracks from synthetic tracks: Obstacles and
collaboration. In the real life, users have to deal with obstacles such as buildings, constructions
and vegetation. Users therefore move along paths and roads. Additionally, real users tend to
cooperate and move in groups. Nodes simulated by the Random waypoint model do, however,
take neither obstacles nor collaboration nto consideration.

66 CHAPTER 8. SIMULATION METHODS

Figure 8.2: Traveling pattern of 22 mobile nodes following real position tracks.

The effect of this simplification is effectively demonstrated by figure 8.1 and figure 8.2, which
show the movement patterns of Random Waypoint and the real traces respectively. We clearly
see that the nodes are more evenly distributed across the area when the synthetic model is used
compared to using real tracks.

It is expected that the two different mobility patterns will influence the performance of the
chosen routing protocol. The following simulations will test this hypothesis.

8.2.2 Scenario description

The ns-2 network simulator [92] was used to perform the simulations. Two different routing
protocols were included: the built-in AODV implementation and UM-OLSR from the university
of Murcia [93]. Both AODV and OLSR used the default parameter settings as described in their
corresponding RFCs 3561 [75] and 3626 [20] respectively.

The traffic pattern in the network was constant bit rate (CBR) connections, with fixed packet
sizes of 50 bytes. Each of the 22 nodes transmitted one packet to each of the other nodes every
10s. The CBR connections were initialized after a warm-up time of 60s. The purpose of the 50-
byte package was to simulate typical location service (GPS) messages, which is an important
feature in tactical networks. For the sake of simplicity, no multicast feature was enabled.

50 different movement patterns were generated for the Random Waypoint model. For each run,
the number of successfully received packets and the number of hops were logged in order to

8.2. OBTAIN A REALISTIC DYNAMIC TOPOLOGY 67

Parameter Value
Simulator NS-2.31
OS MAC OS 10.5.2
Simulation Time 1550s
Simulation Area 530 x 238 m
Nodes 22
Transmission Range 100m
MAC 802.11
Movement Model Random Waypoint / (real-world)
Patterns 50 (1)
Node speed 1.0m

s / (real)
Pause Time 0.0s / (real)
Routing Protocol UM-OLSR / NS-2.31 AODV
CBR Sources 22
Data Payload 50 bytes
Packet Rate 0.1 packets / sec
Traffic Pattern peer-to-peer

Table 8.1: Setup of the simulation. Numbers for the real-world trace simulation in parenthesis.

Number of hops (% of traffic) Avg
Protocol Mobility Lost packets 1 2 3 4 5 6 7 8 9
AODV Real 4.5% 51.9 27.0 11.6 3.9 0.9 0.1 0.0 0.0 0.0 1.6
AODV RWPT 29.2% 25.5 18.4 12.4 7.4 4.1 2.0 0.8 0.3 0.1 1.7
OLSR Real 5.6% 60.3 25.9 7.1 1.1 0.1 0.0 0.0 0.0 0.0 1.4
OLSR RWPT 25.0% 30.1 23.2 12.7 5.7 2.3 0.7 0.2 0.0 0.0 1.6

Table 8.2: Amount of lost packets, and distribution of traffic regarding to the number of hops. Both real
tracks (Real) and random waypoint (RWPT) are used.

compare traffic distribution, node distribution, packet loss and delay. The results were aver-
aged and the 95% confidence interval was estimated and given in the figures. Due to time and
resources available, real world tracks from only one (albeit fully realistic) exercise was used.
Simulation setup is given in Table 8.1.

8.2.3 Traffic distribution

I wanted to examine how the CBR traffic was routed in the network using different routing
protocols and mobility models. Figure 8.3 and Table 8.2 illustrate how the different mobility
models influence the number of hops necessary to transmit CBR packets end-to-end in the
scenario. Using real tracks, the number of hops necessary to establish connection between any
pair of nodes never exceeds six, while the Random Waypoint model yields longer paths.

Table 8.2 also reveal that—regardless of the routing protocol—a great number of CBR packets
are lost in the Random Waypoint scenario. Comparing routing protocols and mobility models,
we see that the mobility model has a greater affect on the performance than the choice of routing
protocol.

68 CHAPTER 8. SIMULATION METHODS

Figure 8.3: Amount of traffic transmitted with respect to number of hops.

8.2.4 Node distribution

In real-world networks, users are expected to form groups and move united. One way to measure
this effect is to count the number of neighbor nodes (1-hop) and the number of routed nodes. A
high percentage of neighbor nodes implies that the nodes are formed in groups. A high number
of routed nodes implies (obviously that the routing works and) that the groups are not clustered
beyond radio transmission reach.

Figure 8.4 shows the average percentage of neighbor nodes (1-hop) when changing routing
protocol and mobility model. As expected, the number of neighbor nodes is independent of the
choice of routing protocol. Comparing the mobility models isolated, we observe that the real-
world track model leaves more nodes in the one-hop proximity. This is expected, as real-world
nodes collaborate and move together. This effect is not considered in the Random Waypoint
model.

By examining all CBR packets transmitted from each node, the number of accessible routed
nodes and the average hop-count can be found (Figure 8.5 on page 70). The figure reveals two
important findings: (i) when the real nodes are clustered in groups (as seen in the first 400s),
coverage is reduced compared to Random Waypoint. (ii) When real nodes collaborate (as with
the last 1100s) coverage increases compared to Random Waypoint. Hence, Random Waypoint
underestimates both group clustering and node collaboration.

8.2. OBTAIN A REALISTIC DYNAMIC TOPOLOGY 69

Figure 8.4: Average number of neighbors during the 1550s run.

8.2.5 Delay

The time-delay between transmission and receiving a packet is another interesting feature. Fig-
ure 8.6 reveals that the delay for packets traversing between one-hop neighbors is mainly de-
pendent of the routing protocol and not the mobility model. As AODV is a reactive protocol, it
is expected to yield longer delays than the proactive OLSR counterpart.

Figure 8.7 illustrates the end-to-end delay for all packet transmissions. We clearly see that,
since the average hop count is lower in the real-track model, the delay is reduced compared to
the Random Waypoint model. Thus, as Random Waypoint treats each node independent, the
model overestimates delay.

8.2.6 Conclusions

From the simulations conducted, the following conclusions are established:

• It is crucial to create a realistic scenario when performing performance evaluation. Real
traces from a real exercise or test are preferred.

• OLSR performs better than AODV regarding end-to-end delay in the network for both
Random Waypoint and when using real tracks. It is not the scope of this thesis to per-
form a thorough performance comparison of OLSR and AODV. The results, however,

70 CHAPTER 8. SIMULATION METHODS

Figure 8.5: Average number of all accessible nodes during the 1550s run.

correspond well with previous research [21, 42].

• Random Waypoint treats each node independent and underestimates the relative depen-
dence of the nodes. Hence, the routing protocol and any other protocol dependent on
the routing protocol (such as cross layer service discovery) will perform different in the
simulation compared to the real life environment.

• Random Waypoint overestimates delay compared to the real world tracks.

• Random Waypoint underestimates the variation in the topology.

As a summary of the above, I state that the mobility pattern will have a greater effect on the
results from an ad-hoc network simulation than the choice of routing protocol.

8.3 Scenarios used in this thesis

Random Waypoint is the most common mobility model to validate ad-hoc network protocols—
despite of the different weaknesses discovered [96] and the issues explained in this chapter. In
this thesis, different scenarios and mobility models are used to evaluate the Mercury service
discovery protocol to obtain confidence. All simulations and their results are given in the next
chapter.

8.3. SCENARIOS USED IN THIS THESIS 71

Figure 8.6: Average delay for one hop using different routing protocols and mobility models.

8.3.1 Static scenarios

Static scenarios with no mobility are used to make initial performance evaluation of the proto-
col. Distinct features such as the Bloom filter and overhead measurements are more practical
to evaluate by static models. Static models are also used to make comparative simulations with
real-world measurements and to compare Mercury with existing service discovery protocols.

8.3.2 Dynamic scenarios

Dynamic scenarios (with synthetic mobility) are used to evaluate the caching features of Mer-
cury. A mobile scenario using real tracks is used to make a final and realistic evaluation of the
protocol.

72 CHAPTER 8. SIMULATION METHODS

Figure 8.7: Average end-to-end delay using different routing protocols and mobility models.

Chapter 9

Simulations

What happens if a big asteroid hits Earth? Judging from realistic simulations in-
volving a sledgehammer and a common laboratory frog, we can assume it will be
pretty bad.

Dave Barry

In this chapter, simulations are performed to test the most prominent features of the Mercury
service discovery protocol. Different static, mobile, and real-life scenario setups—as introduced
in the previous chapter are used to test different features. The simulation setup, results and the
conclusions are listed for each test.

9.1 Introduction

The ns-2 network simulator is used for all simulations. The code extension described in chapter
6 is included and compiled with the ns-2 code. The parameters listed in Table 9.1 are used for
all simulations unless otherwise mentioned.

Parameter Value
Simulator NS-2.31
OS MAC OS 10.5.2
Transmission Range 100m
MAC 802.11
Reflection model Two Ray Ground
Movement Model Random Waypoint
Routing Protocol UM-OLSR
OLSR Settings Default [20]

Table 9.1: Default setup for all simulations.

73

74 CHAPTER 9. SIMULATIONS

Number of available services
k 1 2 4 8 16 32 64 128 256
1 .0072 .0145 .0296 .0625 .1208 .2345 .4342 .7003 .8823
2 .0003 .0016 .0034 .0121 .0408 .1741 .3941 .7664 .9494
3 0 .0003 .0009 .0041 .0242 .1717 .4750 .9304 1.0000
4 0 0 .0002 .0016 .0173 .1632 .5258 1.0000 1.0000
5 0 0 .0001 .0010 .0100 .1585 .6101 .9619 1.0000
6 0 0 .0001 .0011 .0171 .2359 .8244 1.0000 1.0000
7 0 0 0 .0009 .0129 .2178 .8044 1.0000 1.0000
8 0 0 0 .0008 .0091 .2380 .8294 1.0000 1.0000
9 0 0 0 .0003 .0143 .3035 .9322 1.0000 1.0000
10 0 0 0 .0003 .0193 .3447 .9250 1.0000 1.0000

Table 9.2: Measured false positive probability using a 128 bit Bloom filter.

9.2 False positive probability of the Bloom Filter

Bloom filters are a major component of the Mercury service discovery implementation. The
false positive property of such Bloom filters is described and evaluated analytically in 4.2.1.
These analytic results represent the theoretic optimum, given a perfect hash function. No Bloom
filter implementation is, however, expected to achieve the optimum value. It is important to
evaluate how the Mercury implementation corresponds with the analytic results. If a correlation
is found, the equations in chapter 4 can be used (with certainty) to estimate the impact of the
false positive probability when altering one of the Bloom filter parameters (number of hash
functions, width of the filter or number of services).

9.2.1 Description

The false positive rate was estimated for different combinations of k (number of hash functions)
and n (number of services offered). In order to isolate the false positive feature, a static scenario
was chosen, consisting of two nodes: A and B. A was offering a set S consisting of n =
{1, 2, 4, 8 . . . 256} services using k = {1..10} hash functions. For each combination of service
number and hash functions, node B requested a set of 10000 different services which were
intentionally not part of the set S. The false positive rate was calculated as the amount of service
requests out of the 10000 requests yielding a positive reply. The width of the Bloom filter was
kept constant at 128 bits.

9.2.2 Results

Table 9.2 shows the false positive rate measured by the simulations, and Figure 9.1 compares the
simulated result with the expected false positive rate calculated by equation 4.1 on page 25. On
average, the false positive rate of Mercury is 0.5 percentage points above the theoretic optimum.
Increasing the number of service requests can reduce the variance observed in the figure.

9.3. PATH-AWARE ALGORITHM 75

Figure 9.1: False positive probability of a 128-bit Bloom filter. Measurements from simulations (dots)
compared with calculations (solid-drawn line) for each value of k.

9.2.3 Conclusions

The following conclusions are drawn from the results:

• The performance of the MD5 based Bloom filter in Mercury closely matches the theoretic
optimum.

• Given the strong correlation between the theoretic performance and the measurements,
future evaluations of the effect by changing Bloom filter values (hash functions, number
of services, or filter width) can be performed with confidence using the equation 4.1.

9.3 Path-aware algorithm

The Mercury service discovery protocol utilizes caching of the advertised services in order
to save overall network bandwidth. Local caching may however, lead to false positives if the
advertised service exist in cache even if the node that advertised the service is not available
anymore. Such false positive replies cause unacceptable delays and reduce user satisfaction.
For this reason, Mercury includes a Path-aware scheme as described in 4.5.1 on page 31. Sim-
ulations were performed in order to reveal any possible benefits by implementing the proposed
caching scheme.

76 CHAPTER 9. SIMULATIONS

Figure 9.2: False positive probability caused by caching in a dense network.

9.3.1 Description

Two scenarios were created; one dense and one sparse. The dense scenario consisted of 22 nodes
in a 250m x 550m area. The sparse scenario increased the area to 500m x 1000m. In both cases,
the nodes followed the random waypoint model from [11] with constant speeds (0,1,2,5,10
m/s) and no pause times. Each of the nodes advertised one service, and these services were
randomly requested. Each service lookup that was found in the local cache of a node when the
service provider was out of reach (not in the routing table), was counted as a false positive.
20 simulations were run for each combination of node speed and cache time and the 95%
confidence interval was estimated and presented in the figures.

9.3.2 Results

The results show the false probability using caching. We observe from Figure 9.2 that an appli-
cation requesting a service has a probability up to 12% of receiving a false positive reply when
a cache timeout of 1000s is used. Even with 100s timeout, the probability is above 10%.

By examining the sparse setup, Figure 9.3, we see that the false positive probability increases
considerably. A sparse setup is more likely to form network clusters, which in turn yields er-
roneous cache entries. By foreseeing a realistic network with nodes moving at 2-10m/s and a
cache timeout between 50-100s, the figure show that a false probability of more than 50% can
be expected.

9.3. PATH-AWARE ALGORITHM 77

Figure 9.3: False positive probability caused by caching in a sparse network.

In both the dense and the sparse scenario, the false positive probability can be effectively re-
duced to zero using the path-aware algorithm. The reduction is achieved since the algorithm
verifies node availability using the local routing table and initiate a new discovery in the net-
work if necessary. Without this cross-layer interaction, false positive replies are inevitable.

An amount (albeit relatively small) of false positive replies may still occur, as the routing table
may contain links to nodes out of reach.

Observation

The astute reader may observe that the false positive rate tend to decrease as the node speed
increases. I found that the routing tables contained more nodes as the speed increased. This
phenomenon could be caused by a combination of different independent factors: (i) The random
waypoint model does not distribute the nodes uniformly and they are more likely pass through
the center of the simulated area as the walking distance increases. (ii) The combination of the
HELLO interval and the transmission range give a higher probability to maintain a OLSR link
as the speed increases.

This phenomenon is not fully understood and deserves further examination.

78 CHAPTER 9. SIMULATIONS

9.3.3 Conclusions

The following conclusions are drawn from the results:

• Caching induce a probability of false positive lookups when service requests are per-
formed. The probability can be as high as 10-50% depending on the node density, node
speed and cache timeout.

• The Mercury path aware caching effectively reduces the false positive probability.

• Further work is necessary to examine how OLSR routing parameters affect the valid-
ity of the routing table—which in turn affect the performance of the service discovery
architecture.

9.4 Comparing Mercury with existing application layer protocols

As described in section 3.1 on page 15, there are two different approaches when designing
a service discovery protocol: Either (i) using application-layer service discovery with service
dissemination utilizing IP-multicast, or (ii) to use the unicast routing protocol in a cross-layer
fashion and perform service dissemination by extending the routing control messages.

As Mercury belongs to the latter category, I wanted to make a qualitative benchmark of the over-
head induced by the service discovery process and the average time consumed when requesting
a service compared with two existing application layer service discovery protocols. PDP [12]
and SLPManet [2] were chosen as two independent counterparts in the comparison. Both PDP
and SLPManet come with ns-2 code and example simulations.

However, both PDP and SLPManet implementations suffered from limitations and errors, which
made it difficult to create a wide range of valid simulation scenarios. SLPManet did not support
simulation of both a service provider and a service requester simultaneously on the same node.
PDP on the other hand did not handle more than two service providers in the same scenario.
An additional problem occurred with the ns-2 scheduler when running the PDP code in certain
scenarios. Finally, PDP did not take the length of the service descriptor into consideration when
calculating the packet size. This deficiency was corrected.

Both PDP and SLPManet rely on an underlying multicast routing protocol. Notice that multicast
in ad-hoc networks is still an open issue (no standard is defined). Simplified Multicast Forward-
ing (SMF) [61] is, however, proposed by the IETF and represents one of the most promising
proposals to solve multicast in MANETs.

Simulating SMF is possible using the nrlolsr [67] implementation for ns-2, and was used for
the simulations of PDP and SLPManet. To provide the best working conditions for PDP and
SLPManet, SMF was used in S-MPR mode as this is one of the most effective and robust
multicast approaches [62]. In contrast to UM-OLSR, nrlolsr did not consider the size of the
UDP and IP headers when creating simulation traces. This deficiency was corrected.

9.4. COMPARING MERCURY WITH EXISTING APPLICATION LAYER PROTOCOLS79

Figure 9.4: Static model used to measure the service discovery overhead.

9.4.1 Measuring overhead

Description

A set of different static topologies were used to measure the overhead. The topologies consisted
of nodes oriented in squares of {4, 9, 16 . . . 64} nodes. Figure 9.4 shows the 16-node setup. All
topologies had two services, located on node 0 and 1. The services were randomly requested by
the other nodes with 5s intervals during the 1500s run. For each static topology, 20 simulations
were run and the 95% confidence interval was estimated and presented in the figures. Mercury
was configured both without caching in order to reveal the exact discovery overhead, and with
300s caching—a setting more realistic in a final deployment. The service descriptors had a
length of 10-15 characters.

Results

Figure 9.5 shows the average network traffic induced by one single service discovery with in-
creasing network size. Compared to its counterparts, the service discovery overhead is reduced
by a factor of 20 when using Mercury. The numbers show that Mercury induces less traffic
than the two counterparts and that the performance gains are considerable. The overhead re-
duction using Mercury is partly due to the service descriptor compression achieved from the
Bloom filters (compared to transmitting the service descriptors as text), and partly due to the
piggybacking of the information in OLSR packets.

9.4.2 Measuring delay

Description

The number of hops between the service request node and the service provider is the factor
that has the greatest effect on the service discovery delay. To isolate and measure the time

80 CHAPTER 9. SIMULATIONS

Figure 9.5: Overhead using Mercury compared with SLP and PDP.

Figure 9.6: Static model used to measure the service discovery delay.

delay, a static network of nodes was chosen. The nodes were connected in chains of 2-16 nodes,
yielding 1-15 hops (Figure 9.6). The only service in the network was located on node 0 and was
requested by the node in the opposite end of the chain with 10s intervals. The delay between
a service request and the successful receipt was measured for 100 requests. In the simulation,
both Mercury and SLPManet utilize local caching with 300s timeout. A simulation was also
performed with caching switched off (timeout 0s) on Mercury for comparison.

Results

Figure 9.7 show the delay using Mercury (with and without caching) together with SLPManet
and PDP. As shown, Mercury without caching is considerably slower than the counterparts.
This is caused by OLSR packet forwarding which is slower than IP forwarding. OLSR uses a
jitter time in order to support piggybacking of several OLSR packets to one common header.
During this jitter time, the packets are delayed. However, considering the results in 8.2.5, I state
that using an AODV based service discovery protocol, the service discovery delay would have
been increased further.

9.4. COMPARING MERCURY WITH EXISTING APPLICATION LAYER PROTOCOLS81

Figure 9.7: The service discovery delay using Mercury and no caching compared with SLP and PDP.

Using a caching timeout of 300s (which is more realistic than 0s in a real-world setting), the
result looks promising for all of the three service discovery alternatives (Figure 9.8). In this test,
the number of nodes was increased to 20. Notice that Mercury performs better than SLPManet.
As both protocols employ caching, they were expected to show equal performance.

Both SLPManet and PDP had delay fluctuations making the estimated the 95% confidence
interval to wide to show in the figure. With PDP I measured discovery delays up to several
seconds for some node configurations. Most probably, those results were caused by errors in
the PDP implementation. Therefore, I chose to omit them from the figures as the paramount
intention with this test was to compare application-layer service discovery with cross-layer
service discovery and not to compare quality of the protocol implementations.

Notice that the time consumed to connect to the actual service is not considered in this test. This
particular time can be many times higher than the discovery delay found in these simulations.

9.4.3 Conclusions

The following conclusions are drawn from the results:

• Thanks to the optimizations included in the Mercury architecture, the service discovery
overhead is reduced by a factor of 20 compared to application layer protocols.

• The delay induced in a discovery process is effectively reduced when caching is enabled.

82 CHAPTER 9. SIMULATIONS

Figure 9.8: The service discovery delay using Mercury with caching compared with SLP and PDP.

With caching, the average delay in a realistic scenario is reduced with more than 90%,
and the delay is equal to, or lower than application-layer protocols.

9.5 Comparison of real-world and simulated environment

9.5.1 Description

In order to validate the olsrd-implementation described in chapter 7, a real test was performed
with a limited number of nodes. Four laptops were equipped with WLAN cards and olsrd 0.5.5
configured according to the RFC [20]. The nodes were aligned according to Figure 9.6.

In order to compare the exact service discovery delay, caching was turned off in the Mercury
plugin. The delay was defined as the time consumed between a service request from an ap-
plication to a successful reply was received in the same application. 100 such requests were
performed, and the 95% confidence interval was estimated and presented in the figures.

9.5.2 Results

Figure 9.9 shows the delay measured in the real test compared to results from the simulation
described in 9.4.2 on page 79. As shown, there is a strong correlation between the simulated

9.5. COMPARISON OF REAL-WORLD AND SIMULATED ENVIRONMENT 83

Figure 9.9: Comparing the delay measured by simulation and measured in a real-world test.

results and the real-world measurements.

The variation in the results can be explained by different process priority, other operating system
settings and the effect of real radio propagation in the real experiment compared to the simulated
environment.

9.5.3 Conclusions

The following conclusions are drawn from the results:

• There is a strong correlation between the simulation and the real-world measurements
regarding service discovery delay.

• The implementation of olsrd works as expected by the simulations and is valid for future
tests and real-world deployments.

• The service discovery overhead was not measured in the real network. The overhead
should correspond with the simulations, however, this is a task for future tests.

84 CHAPTER 9. SIMULATIONS

Figure 9.10: Overhead in the real-track simulation with different cache time.

9.6 Performance using real tracks

9.6.1 Description

I wanted to compare the performance of Mercury using synthetic mobility with real mobility
tracks gathered from a real-world experiment. The scenario introduced in 8.2.2 on page 66 was
used to evaluate Mercury using real tracks. The purpose of the simulation was to give Mercury
realistic working conditions.

Every node in the network advertised one service. Services were randomly requested by a ran-
dom node in 10s intervals during the 1550s simulation. The overhead and the delay induced by
each service discovery were then measured with different cache timeouts. The overhead was
averaged and the 95% confidence interval was estimated and presented in the figures.

The confidence interval for the delay measurements was not estimated, due to the variance in
delay—caused by caching and network clustering.

9.6. PERFORMANCE USING REAL TRACKS 85

Figure 9.11: Service discovery delay in the real-track simulation with different cache time.

9.6.2 Results

Overhead

The service discovery overhead decreases with increasing cache time (Figure 9.10). The mea-
sured overhead correspond to the results found in the static network topology in Figure 9.5 on
page 80.

Delay

The service discovery delay decreases with increasing cache time (Figure 9.11). Compared to
the delay measured in the static network in Figure 9.8, the delay has increased. This is expected,
as the mobile scenario consist of periods of network clustering. A service request will be de-
layed during the period a service provider is out of reach. In the static scenario, all nodes are
available at all time, which explains why the service discovery delay is an order of magnitude
larger in the mobile scenario1.

1The nature of movement affect the performance, as discussed in 8.2.

86 CHAPTER 9. SIMULATIONS

Observation

It is worth noting that in this particular 1550-second scenario, the nodes first move in three
independent groups, and then they move together and collaborate. Since the node availability
gradually increase during the simulation (see Figure 8.5 on page 70), false positive cache queries
are not very likely to occur compared to using random movement—simulated in 9.3. In fact,
the number of false positives measured was almost insignificant. A different real-track scenario
with more mobility, sparse node distribution, and a more aggressive service discovery pattern
may yield a completely different result.

9.6.3 Conclusions

The following conclusions are drawn from the results:

• Caching reduces both the overhead in the discovery process and the average discovery
delay.

• Network clustering and mobility increases time consumed in the service discovery pro-
cess.

• The mobility pattern greatly influences the performance of the service discovery protocol.

Chapter 10

Conclusion

There’s two possible outcomes: if the result confirms the hypothesis, then you’ve
made a discovery. If the result is contrary to the hypothesis, then you’ve made a
discovery.

Enrico Fermi

This chapter summarizes the results in the thesis. I also consider my results in relation to other
research in the area and presents suggestions for future work.

10.1 Major contributions in the thesis

The aim of this project was to investigate and create a service discovery protocol for bandwidth-
constrained environments. One important part of the work was to evaluate the proposal in a
realistic setting. The proposal was evaluated by simulation, compared to existing protocols, and
implemented for real-life usage.

The major contributions in this thesis are summarized as follows:

• Design of a new service discovery protocol (Mercury). The protocol utilizes the OLSR
routing protocol in a cross-layer fashion and piggybacks service advertisements and re-
quests to ordinary routing traffic. The protocol takes advantage of caching to reduce
unnecessary service requests, and utilizes an optimized way to describe services using
Bloom filters.

• Implementation of Mercury for the ns-2 network simulator and as a plugin to olsrd. The
first implementation makes comprehensive simulations possible. The latter implementa-
tion is for real-life usage, and makes it possible to use service discovery in any distributed
application using a simple interface. An example is demonstrated in appendix C where a
SIP user agent has been extended to utilize service discovery.

• Evaluation of different scenarios and mobility models for ad-hoc network research. A
framework for testing service discovery by static models, synthetic mobility and mobility
by using real-tracks is provided.

87

88 CHAPTER 10. CONCLUSION

The protocol and simulation results was presented at the 4th OLSR Interop / Workshop, Canada
2008. The published paper is attached in appendix E. The implementation is made available as
open source available for downloading at [27].

10.2 Summary of results

I compared two routing protocols (AODV and OLSR) using two different mobility models:
random waypoint and tracks from a real exercise. The results clearly showed that the mobil-
ity model had a greater influence on the overall performance in the network than the choice
of routing protocol. This served the basis for the different scenarios used in the subsequent
simulations.

The Mercury service discovery protocol consists of several components to facilitate service
discovery in bandwidth-constrained environments. The false positive probability of the Bloom
filter was evaluated by simulation concluding that the chosen algorithm performed close to the
theoretical limit.

The Mercury protocol was compared to two application-layer service discovery protocols (SLP-
Manet and PDP). The simulation results showed that Mercury is superior to both proposals
regarding overhead and that caching is the most important feature to consider when optimiz-
ing for bandwidth. Service descriptor compression achieved from the Bloom filters (compared
to transmitting the service descriptors as text), and piggybacking of the information in OLSR
packets reduces the overhead further. To the best of my knowledge, no other cross-layer service
discovery proposals describe service descriptors as Bloom filters. It is therefore expected that
Mercury outperforms cross-layer service discovery proposals such as [43, 57].

The experiments also revealed that caching is fundamental to reduce the average service dis-
covery delay. Mercury performed better than, or equal, than its counterparts regarding service
discovery delay.

I carried out some experiments to discover any disadvantages by caching. The experiments
showed that using random waypoint mobility model, the nodes were prone to create clusters and
hence, the entries in the cache were bound to be false with a certain probability. False positive
cache queries are inappropriate both from the application and user perspective. An extension
to the cache was therefore introduced to verify node availability by checking the routing table
prior to the application feedback. An amount of false positive replies may still occur, as network
mobility and routing protocol settings may lead to false entries in the routing table.

It should be noted that when a mobility model with gradually increasing connectivity (using real
tracks) was used, the chance of getting a false positive cache entry was almost zero. This proves
that the choice of mobility model is extremely important when evaluating any component or
algorithm in ad-hoc network research.

10.3. FUTURE WORK 89

10.3 Future work

The implementation of the Mercury service discovery protocol is now fully working. During
the work of the thesis new ideas to improvements have come to mind: Additional functionality,
ideas to new simulations, and other interesting subjects for future research:

10.3.1 Simulations and tests

I consider the protocol to be thoroughly tested and evaluated. I believe that it is particularly
important to use real-tracks in simulation studies to evaluate the protocols in a realistic scenario.
The gathering, examination and conversion of real-tracks are, however, time consuming. For this
reason, only one single 30-minute track was used in the real-track simulations. Using additional
simulations would have been beneficial. Nevertheless, when comparing to random waypoint,
the results are conclusive: it is paramount to obtain a valid mobility model. For future research
of service discovery (or any ad-hoc network protocol), I encourage to take advantage of a huge
set of realistic real-track scenarios when performing simulations.

The real-world tests performed in the thesis was limited. The results was, however, concurrent
with simulations. A natural step forward is to include Mercury on OLSR enabled low-bandwidth
UHF radios [4] for further real-world tests.

10.3.2 Implementation

The following elements in the implementation deserve future work:

• Currently Mercury has no IPv6 support. To add IPv6 support is rather straightforward, as
olsrd supports both versions.

• The protocol should be extended to include OLSRv2 support. This can be done by creat-
ing the Mercury Service Discovery Message as a Type-Length-Value structure (TLV), a
part of the generalized MANET Packet/Message Format [19].

• In chapter 4, MD5 was proposed as a hash function. The Mercury-plugin, however, uses
a slightly faster hash function that can be easily be replaced with MD5 in the future if
desirable.

• The service withdrawal scheme forces each application to withdraw services prior to
shutdown. In a future version, the Mercury plugin could handle this per IPC socket basis,
and perform withdrawal automatically when an application disconnects.

• IP-autoconfiguration is an additional method to provide auto-configurated MANETs and
is not considered in this thesis. Solutions such as [18] could easily be combined with
Mercury to provide fully auto-configured MANETs.

90 CHAPTER 10. CONCLUSION

10.3.3 Performance optimization

If desirable, the performance of the protocol could be further optimized by employing the fol-
lowing proposals:

• As the mobility model has paramount effect on the performance of the routing protocol,
the OLSR parameters should be tuned to fit the target scenario as emphasized in [39, 31].

• A way to reduce the OLSR overhead is to include kernel support of OLSR in order to
omit UDP as transmission protocol.

• The use of IP header compression is a possible step to obtain further performance gains,
either by using ROHC [9] or MANET tailor made solutions [46].

10.3.4 Interoperability

Interoperability between different service discovery architectures needs to be addressed. The
survey [44] addresses service discovery protocols for different military operational levels and
discusses how to obtain interoperability between those levels. With Mercury it is possible to
summarize an entire service directory (e.g. of XML services) into one single message. However,
it is difficult to convert from Mercury Bloom filters to any other non-Bloom filter based service
discovery protocol.

One could consider to create a compatibility level between Mercury and other service discovery
protocols such as DNS-SD [15] or SSDP [30]. This will allow existing unmodified applications
to utilize Mercury in the ad-hoc network.

10.4 Conclusion

Service discovery is one of the most important techniques to lower the user interaction to a min-
imum and to assist software developers creating user-friendly and well-designed applications
for mobile ad-hoc networks.

The successful implementation of Mercury shows that service discovery in mobile ad-hoc net-
works is feasible. I state that a combination of optimization techniques as presented by Mercury
is inevitable in order to support efficient service discovery in bandwidth-constrained environ-
ments.

10.4.1 Final remarks

In 2003 Chlamtac et al. stated that no MANET killer application had yet emerged [17]. While
this statement may still hold for commercial networks, there are two areas where MANETs
are now considered inevitable: First-responder networks (emergency responce) and tactical net-
works. There has been a major focus during the recent years—both within academia and by the
industry—to solve issues to provide reliable ad-hoc network capabilities in those two areas.

10.4. CONCLUSION 91

Ad hoc technology has now proved to be a very useful tool for meeting the tactical battlefield
communication requirements [80]. The industry is now embracing this technology, and in the
recent years, several vendors have provided handheld radios with MANET capability.

Mobile ad-hoc networks will continue to evolve and new target applications will probably
emerge. I expect that service discovery will play an important role in fulfilling the expectations
of the future mobile ad-hoc networks.

92 CHAPTER 10. CONCLUSION

Appendix A

Bloom Filters

A.1 False positive calculation

Given that m is the length in bits of the Bloom filter, n is the number of service descriptors
inserted in the filter, and k is the number of hash functions used, the false positive probability
can be calculated as shown in this section.

Presumed that the hash function calculates array positions as a uniform distribution, the proba-
bility that a given bit in the filter is not set to 1 is:

1− 1
m

Hence, the probability that none of the hash functions h1, h2, . . . hk has set the given bit in the
filter to 1 is: (

1− 1
m

)k

If we continue by inserting n service descriptors, the probability that a given bit in the filter m
is not set is given by : (

1− 1
m

)kn

The probability for a certain bit in m is set to 1 is:

1−
(

1− 1
m

)kn

Each of the k array positions computed by the hash functions is 1 with the above probability.
The probability that the algorithm erroneously claims that a service descriptor is in the set is
equal to the probability that all of the bits set by the k hash functions is 1:

Pfp =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−

kn
m

)k
(A.1)

93

94 APPENDIX A. BLOOM FILTERS

 0.01

 0.1

 1

 1 10 100

P
ro

b
ab

il
it

y

Services

256bit

k=2
k=4
k=6

 0.01

 0.1

 1

 1 10 100

Services

512bit

k=2
k=4
k=6

 0.01

 0.1

 1

 1 10 100

P
ro

b
ab

il
it

y
64bit

k=2
k=4
k=6

 0.01

 0.1

 1

 1 10 100

128bit

k=2
k=4
k=6

Figure A.1: The false positive probability varies as a the number of hash functions (k) changes, and
decreases as the filter size increases

A.2 The optimal number of hash functions

For a given m and n, the optimal number of hash functions k can be calculated by taking the
derivate of the equation A.1. If we let f = (1 − e−

kn
m)k, we find that minimizing the false

positive rate is equivalent to minimize df with respect to k:

df

dk
=
(
1− e−

kn
m

)k

k n

m

e−
kn
m(

1− e−
kn
m

) + ln
(
1− e−

kn
m

) (A.2)

Solving equation A.2 with respect to k, we find that the derivate is 0 when k = m
n ln 2. Hence

the optimal number of hash functions, kopt, for a filter of width m and a certain number of
service descriptors n is then:

k =
m

n
ln 2 ⇒ kopt = bke (A.3)

A.3. FINDING THE OPTIMAL PARAMETERS 95

A.3 Finding the optimal parameters

By using equation A.1 on page 93, the effect by changing the number of hash functions k and by
changing the filter size m can be effectively demonstrated (Figure A.1 on the preceding page).
In the Figure, m = {64, 128, 256, 512} respectively, and k = {2, 4, 6} for all variations of m.
Not surprisingly, increasing the size of the filter decreases the false positive probability.

When an appropriate m is chosen that best suits the target application, the optimal value of k
can be chosen by estimate the maximum number of services to be held in the Bloom filter, and
then use the equation A.3.

In Mercury the default values are m = 128 and k = 4.

A.4 MD5 in Bloom filters

The actual number of bits that can be set by MD5 is bound by min(m, 2b
128
k
c). It is therefore

meaningless to increase the size of m above 2b
128
k
c.

Solving the equation A.1 with respect to n, the maximum number of services that can be stored
without increasing the false probability above p can be found as:

n ≤ ln(1− p
1
k)

k ln(1− 1
m)

(A.4)

Thus, the maximum number of services that can be stored in a MD5 based Bloom filter using
the maximum size 2

128
k is:

nmax ≤ ln(1− p
1
k)

k ln(1− 2b
−128

k
c)

(A.5)

In our context—distributed service discovery in ad-hoc networks—the number of services ad-
vertised by each node is certainly not indefinite, and the theoretical upper limit using MD5 is
likely never to be reached. Even if we define a service to be a fine-grained definition of a util-
ity, application or resource, the total number of services is probably fewer than 20-30 for each
node. In this thesis, I therefore claim that in distributed service discovery, a filter size of 2

128
k is

sufficient and that 128-bit MD5 is a perfect match to create Bloom filter hash functions.

96 APPENDIX A. BLOOM FILTERS

Appendix B

Simple simulation example

A simple example for service discovery simulation using Mercury
Arguments : inputmobilityfile outputtracefile

set val(chan) Channel/WirelessChannel
set val(prop) Propagation/TwoRayGround
set val(netif) Phy/WirelessPhy
set val(mac) Mac/802_11
set val(ifq) Queue/DropTail/PriQueue
set val(ll) LL
set val(ant) Antenna/OmniAntenna
set val(x) 540 ;# X dimension of the topography
set val(y) 250 ;# Y dimension of the topography
set val(ifqlen) 50 ;# max packet in ifq
set val(seed) 0.0
set val(adhocRouting) OLSR
set val(nn) 3 ;# how many nodes are simulated
set val(cp) "cbr-3-test"
set val(sc) "scenario"

Agent/OLSR set sd_proactive_ false
Agent/OLSR set sd_ival_ 10
Agent/OLSR set sd_cache_ 300
Agent/OLSR set sd_numhash_ 4

Arguments from command line
Trace file
set trace [lindex $argv 0]

set val(stop) 200.0 ;# simulation time

Antenna/OmniAntenna set X_ 0
Antenna/OmniAntenna set Y_ 0
Antenna/OmniAntenna set Z_ 1.5
Antenna/OmniAntenna set Gt_ 1.0
Antenna/OmniAntenna set Gr_ 1.0

Phy/WirelessPhy set CPThresh_ 10.0
Phy/WirelessPhy set CSThresh_ 1.559e-11
Phy/WirelessPhy set RXThresh_ 1.42681e-08 ; #100m

97

98 APPENDIX B. SIMPLE SIMULATION EXAMPLE

Phy/WirelessPhy set Pt_ 0.28183815
Phy/WirelessPhy set freq_ 914e+6
Phy/WirelessPhy set L_ 1.0

Mac/802_11 set dataRate_ 1e6
Mac/802_11 set basicRate_ 1e6

===
Main Program
==
set ns_ [new Simulator]
set topo [new Topography]

set tracefd [open $trace w]

$ns_ trace-all $tracefd
$topo load_flatgrid $val(x) $val(y)
set god_ [create-god $val(nn)]

#global node setting
$ns_ node-config -adhocRouting $val(adhocRouting) \

-llType $val(ll) \
-macType $val(mac) \
-ifqType $val(ifq) \
-ifqLen $val(ifqlen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-channelType $val(chan) \

-topoInstance $topo \
-agentTrace ON \

-routerTrace ON \
-macTrace OFF

#
Create the specified number of nodes [$val(nn)] and "attach" them
to the channel.

for {set i 0} {$i < $val(nn) } {incr i} {
set node_($i) [$ns_ node]
$node_($i) random-motion 0
}

$node_(0) set X_ 100.00
$node_(0) set Y_ 100.00
$node_(0) set Z_ 0.0000
$node_(1) set X_ 180.00
$node_(1) set Y_ 100.00
$node_(1) set Z_ 0.0000
$node_(2) set X_ 260.00
$node_(2) set Y_ 100.00
$node_(2) set Z_ 0.0000

Service access
$ns_ at 1.0 "[$node_(0) agent 255] SD_ADD_SERVICE temp-sensor"
$ns_ at 2.0 "[$node_(1) agent 255] SD_ADD_SERVICE temp-sensor"
$ns_ at 10.0 "[$node_(1) agent 255] SD_ADD_SERVICE IR-sensor"
$ns_ at 20.0 "[$node_(2) agent 255] SD_REQUEST_SERVICE temp-sensor"

99

$ns_ at 20.1 "[$node_(2) agent 255] SD_REQUEST_SERVICE IR-sensor"

Prints service access in trace file
$ns_ at 1.0 "puts $tracefd \"sd 1.0 0 SD_ADD_SERVICE temp-sensor\""
$ns_ at 2.0 "puts $tracefd \"sd 2.0 1 SD_ADD_SERVICE temp-sensor\""
$ns_ at 10.0 "puts $tracefd \"sd 10.0 1 SD_ADD_SERVICE IR-sensor\""
$ns_ at 20.0 "puts $tracefd \"sd 20.0 _2_ SD_REQUEST_SERVICE temp-sensor\""
$ns_ at 20.1 "puts $tracefd \"sd 20.1 _2_ SD_REQUEST_SERVICE IR-sensor\""

for {set i 0} {$i < $val(nn) } {incr i} {
$ns_ at $val(stop).0 "$node_($i) reset";

}

for {set i 1} {$i < $val(stop) } {set i [expr {$i + 10}]} {
set percent [expr {$i * 100 / $val(stop)}]
set percent [expr {ceil($percent)}]
$ns_ at $i.0 "puts \"$percent % done\"" ;
}

$ns_ at $val(stop).0002 "puts \"NS EXITING...\" ; $ns_ halt"

puts "Starting Simulation..."
$ns_ run

100 APPENDIX B. SIMPLE SIMULATION EXAMPLE

Appendix C

A real-world test: Discovery of SIP
User Agents

In chapter 7, the Mercury service discovery plugin for olsrd was described. In this appendix, I
will demonstrate by example how to extend an existing application to utilize service discovery.

C.1 SIP

C.1.1 Introduction

Session Initiation Protocol (SIP) [79] is designed to provide signaling support for multimedia
application sessions such as IP telephony, video conferencing and instant messaging. SIP itself
is used primarily to set up and tear down multimedia sessions, while the multimedia commu-
nication itself is usually done over separate protocols such as RTP [84]. In order to negotiate
which IP ports to setup and which codes to use, a third protocol—Session Description Protocol
(SDP) [35]—is used. These three protocols are usually combined in a SIP enabled multimedia
application.

SIP defines several network elements: The end user element is called a SIP User Agent (UA)
which may in turn connect to a server element (proxy, registrar or redirect server) or directly to
an other UA.

C.1.2 SIP in MANETs

In fixed networks, centralized Domain Name Service (DNS) servers can be used to locate SIP
servers. Such DNS servers do not, however, exist in most MANETs, and further, the binding
to a centralized SIP server may represent a single point of failure due to mobility and unstable
links. The recommended approach for MANETs is therefore a server-less SIP infrastructure, as
illustrated by figure C.1. In order to create such a server less infrastructure, the SIP UAs must
connect directly to each other without any server element in between.

101

102 APPENDIX C. A REAL-WORLD TEST: DISCOVERY OF SIP USER AGENTS

A

SIP UA

Mobile Ad hoc Network

B

SIP UA

Figure C.1: It is a key issue to determine the location of the SIP User Agents in a Mobile Ad Hoc Network

Previous studies have shown that the challenging problem of finding the location of UAs can
be addressed using Service Discovery. Banerjee et al. [5] compare a SIP discovery process
independent from the routing procedure with a discovery process integrated with the routing.
The latter approach turns out to outperform the independent approach when it comes to both
control overhead and latency in the SIP session setup. Li et al. [58] propose to integrate the
SIP discovery process with the OLSR routing protocol, and demonstrate promising results by
simulation.

The next section will show a similar approach, where an open source SIP UA is extended to
take advantage of Mercury service discovery.

C.2 Code extension

Peers [65] is a minimal SIP user agent written in Java. It enables Voice over IP services by
allowing a user to call another user on a Local Area Network or a MANET using SIP/SDP/RTP.
Using the default Peers installation, the caller is required to enter the IP address belonging to
the node that it wants to call.

In this section I will demonstrate how the Peers user agent can be extended to utilize Mercury
service discovery. Using only a few modifications, the application can utilize the service dis-
covery layer to detect the IP address of other SIP enabled nodes: i.e. there is no need to enter
the IP address manually.

Using the Inter Process Communication Interface as specified in 7.4.6 on page 59, only a few
code lines are necessary in order to extend the existing Java code:

C.2.1 Connect to the plugin

At application startup, the Mercury plugin is connected:

mercurySocket = new Socket("localhost",8888);
out = new PrintWriter(mercurySocket.getOutputStream(), true);

C.2. CODE EXTENSION 103

Figure C.2: Mercury has discovered an other SIP User Agent at the address 192.168.0.3. The search is
done automatically at startup, but can be initiated manually by pressing the new button ”Search”.

in = new BufferedReader(new InputStreamReader(mercurySocket.getInputStream()));

We see that the socket to the Mercury plugin is first established. Then, two objects are created
in order read from and write to the socket.

C.2.2 Advertise the SIP service

After the successful initialization, the service ”SIP” is advertised to inform other SIP-clients in
the ad hoc network about the existence of the UA:

out.println("ADVR SIP");

C.2.3 Request SIP services

The application requests for other SIP UAs using a simple command:

out.println("RQST SIP ALL");

In this setup, the application asks for all services of the type ”SIP” using the attribute ALL. This
attribute tells Mercury to retrieve every one of the SIP-services in the network. In contrast, the
attribute ANY asks for the first service—no matter which one. The latter variant may be useful
for other purposes.

C.2.4 Parse the plugin output

When the plugin is connected, and the service ”SIP” is requested, the client will start to receive
IP addresses of the other entire SIP enabled clients (immediately as they connect) via the IPC
Interface. A string tokenizer parses the incoming string, adds the chosen SIP port (6060 in the
example) and hands the address to the graphical user interface. The look of the interface after
the successful discovery of an other UA is illustrated by Figure C.2.

String inLine = in.readLine();
if(inLine.startsWith("SERVICE FOUND")){

StringTokenizer tok = new StringTokenizer(inLine);
String s1 = tok.nextToken(); // SERVICE

104 APPENDIX C. A REAL-WORLD TEST: DISCOVERY OF SIP USER AGENTS

String s2 = tok.nextToken(); // FOUND
String s3 = tok.nextToken(); // SIP
String s4 = tok.nextToken(); // AT
String s5 = tok.nextToken(); // IP-address

if(s3.equals("SIP")){
String SIPuri = "sip:" + s5 + ":6060";
myGui.updateUri(SIPuri);

}
}

C.3 Summary

This chapter has demonstrated an example of one relevant target application for Mercury service
discovery. By using only a few dozen code-lines, the Peers SIP software is changed to automat-
ically detect another SIP UA in the ad-hoc network. Other existing distributed applications such
as file sharing, instant messaging, whiteboard sharing, can use the same technique.

Appendix D

Tools

A set of different programming languages, systems and tools were used while working on the
thesis.

C# and Visual Studio were used to convert ns-2 traces from GPS tracks used in chapter 8. The
conversion was performed on Windows XP. iNSpect [54] was used to visualize the traces.

C++, STL and the GCC compiler were used to create the service discovery extension for ns-2
described in chapter 6. The simulations described in chapter 8 and chapter 9 were scripted using
TCL and analyzed using bash, awk, sed and a variety of CLI programs. All simulations were
performed on Mac OS X.

The C programming language and the GCC compiler were used on a Linux machine to program
the service discovery plugin for olsrd in chapter 7.

The SIP client extension described in appendix C was programmed in Java using Eclipse.

The plots in the thesis were generated using Gnuplot, and drawings and diagrams were created
in Visio. The thesis report was written in Latex.

105

106 APPENDIX D. TOOLS

Appendix E

Publications

E.1 Web Services and Service Discovery

FFI-RAPPORT 2008/01064 Norwegian Defence Research Establishment.
F. T. Johnsen, J. Flathagen, T. Gagnes et al. 2008.

Available on www.ffi.no.

E.2 Service Discovery using OLSR and Bloom Filters

Paper presented at the 4th OLSR Interop / Workshop, Ottawa, CA, October 14-16 2008
J. Flathagen and K. Øvsthus.

Attached on the next page.

107

Service Discovery using OLSR and Bloom Filters
Joakim Flathagen

Norwegian Defence Research Establishment
BX 25, N-2027 Kjeller, Norway
Email: joakim.flathagen@ffi.no

Knut Øvsthus
Bergen University College

BX 7030, N-5020 Bergen, Norway
Email: knut.ovsthus@hib.no

Abstract—Automatic discovery of services and resources is
a crucial feature to achieve the expected user-friendliness in
Mobile Ad-hoc Networks. Due to limited computing power, scarce
bandwidth, high mobility and the lack of a central coordinating
entity, service discovery in these networks is a challenging task.

In this paper, we develop a service discovery protocol (Mer-
cury) utilizing a combination of different optimization tech-
niques: The performance is increased using cross-layer inter-
action between the application layer and the routing layer.
The service information is described using Bloom filters and
distributed using Optimized Link State Routing (OLSR). A
caching regime is implemented to obtain further reductions of
both overhead and latency.

The analysis and simulation results show that our service
discovery proposal induces very low overhead to OLSR and
is superior to application layer solutions. The proposal is im-
plemented as a plugin to the OLSR implementation olsrd for
real-world deployments.

Index Terms—MANET, OLSR, Service discovery

I. INTRODUCTION

A Mobile Ad-hoc NETwork (MANET) is a collection of
mobile nodes connected by wireless links able to dynamically
form an arbitrary multihop network—without the use of any
pre-existing infrastructure. In order to enable communication
between any two nodes in such a network, a special routing
protocol is employed. The IETF MANET working group
mainly considers two routing approaches: Reactive routing
such as AODV [18] and Proactive routing such as OLSR [5].

However, there is a need for a service discovery protocol to
discover applications, services and resources in the network.
There has been much research activity in the field of service
discovery by several consortiums, companies and organiza-
tions. This research has produced service discovery mainly for
fixed local area networks. Examples include Service Location
Protocol (SLP) [9], Simple Service Discovery Protocol (SSDP)
[8], Jini [20] and DNS Service Discovery (DNS-SD) [4].
However, the overall Internet community has not yet reached a
consensus on one particular service discovery protocol. More-
over, none of the above solutions are applicable to MANETs
without adaptations as these networks have less computing
resources, lower network bandwidth, higher mobility and more
heterogeneity.

Service discovery (SD) mechanisms for MANETs are di-
vided in two groups: (1) mechanisms independent of the
underlying routing protocol, and (2) mechanisms integrated
with the routing protocol, be it either reactive or proactive.

Most of the MANET SD proposals belong to the first
category and solves the SD at a layer above routing—referred
to as application layer service discovery. Examples include
SLPManet [1], PDP [3] and Konark [10], which all rely on
multicast support on the network layer. The performance of
such SD protocols is therefore bound to the chosen multicast
protocol. Further, multicast in MANETs is still at the research
stage (no standard is defined) and is hence an open issue.

A better and more optimized approach is therefore to im-
plement the SD protocol in a cross-layer fashion, and exploit
the routing layer for efficient dissemination of service control
messages. SEDRIAN [16] and the work by Engelstad et al. [6]
propose cross-layer service discovery utilizing AODV. Jodra
et al. [11] and Lightweight Service Discovery (LSD) [12] are
examples of cross-layer service discovery using OLSR.

Differing from previous work on cross layer service discov-
ery based on OLSR, this paper focus to support low-bandwidth
environments and investigates an efficient way to describe
services using Bloom filters combined with service caching.
The analysis and simulation results show that our optimized
SD proposal named Mercury, induces very low overhead to
OLSR and outperforms application layer SD solutions. The
proposal is implemented for real-world deployments [7].

The remainder of this paper is organized as follows: Sec-
tion II presents Mercury service discovery protocol in detail.
Section III describes the real-world implementation. Section
IV and V presents and discusses the simulations. Finally, the
paper is concluded by section VI.

II. OUR SERVICE DISCOVERY DESIGN

A. Overview

To successfully create service discovery for bandwidth-
constrained environments, we envision several combined op-
timizations. For this purpose, we propose a new SD solution,
Mercury. Mercury describes the service descriptors efficiently
as Bloom filters, performs service dissemination by piggy-
backing service information on OLSR routing messages and
utilizes caching of service advertisements.

Mercury handles requests and advertisements from two
entities: (1) Local applications on the node and (2) foreign
nodes through the ad hoc network (Fig. 1). Each node uses a
set of repositories to store the information (Fig. 3): Advertised
services contains the different services offered by the node
itself. The services persist in this list until an upper layer
application withdraws the service. Advertisements are sent

In Proceedings of the 4th OLSR Interop & Workshop, October 14-16 2008

108 APPENDIX E. PUBLICATIONS

Fig. 1. Mercury connects users and applications to services in the Ad hoc
network using service advertisements and service requests.

both when a service is first registered and upon an external
request. All the service descriptors in this list are included in
advertisemens encoded as one single Bloom Filter. In Foreign
services cache, all the services offered by other nodes are
stored. Each entry in the list consists of the Bloom Filter ad-
vertised by the foreign node and its current IP address. The last
repository contains the Requested services which stores all
the services requested—awaiting an incoming advertisement.

All incoming advertisements are immediately stored in the
cache. Upon a request from an upper layer application, the
cache is first requested. If an entry is found, the application is
immediately notified. Otherwise, a service request is sent.

B. Protocol format

OLSR communicates using a unified packet format for
all data [5]. Using this format the OLSR standard provides
extensibility of the protocol without breaking backwards com-
patibility. This feature gives a unique possibility to disseminate
different kinds of information through intermediate nodes even
if the nodes do not support the specific extension.

We take advantage of the extensibility feature of the OLSR
format, and introduce a new message, namely the Mercury
service discovery message (MSD). MSD messages are sent
as the data-portion of the general message format with the
message type set to MSD MESSAGE. The MSD message has
the format specified in Fig. 2 when piggybacked to an OLSR
header. The Mercury part consists of four fields including a
Spare field for future use. The Type field indicates whether the
message is a service request or a service reply. The Service
Filter field contains the filter describing the services to be
requested or advertised encoded as a Bloom filter (described
subsequently). The Filter Length gives the size of the filter.

C. Distributing service descriptors

Many service discovery protocols use XML to describe the
service information, such as in [10]. However, XML requires
considerable bandwidth, which is sparse in ad hoc networks.
An alternative is to map a predefined set of keywords, or
service descriptors, to integers to save bandwidth as proposed
in [11]. This solution indeed saves bandwidth. However, it is
not very flexible nor is it scalable, as it requires maintenance
on every node in the network when new service categories are
added.

The proposed solution in this paper is therefore to distribute
a summary of the available services as a vector described as a
Bloom filter [2]. A Bloom filter is a data structure that allows
data representation in a simple and space-efficient manner.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Packet Length | Packet Sequence Number |

+-+

| MSD_MESSAGE | Vtime | Message Size |

+-+

| Originator Address |

+-+

| Time To Live | Hop Count | Message Sequence Number |

+-+

| Type | Filter Length | Spare |

+-+

| |

: Service Filter :

| |

+-+

Fig. 2. Mercury service discovery format as an extension to the OLSR
message format [5]

The filter is created by hashing service descriptors to a size-
defined bit array. The size limitation may cause the filter to
indicate that a service descriptor is in the filter even though
it is not—referred to as a false positive. The implementation
of the Bloom filter is hence a trade off between the size of
the filter and the probability of a false positive request to the
filter. Our Bloom filter is implemented using k independent
hash functions to hash each service descriptor to the array.
Given the number of service descriptors n and the filter width
m, the probability of a false positive lookup can be given as:

Pn =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−

kn
m

)k

(1)

In order to minimize the false positive rate, the filter width
should mathematically be as large as possible. However, the
feasible size is limited by computation time, OLSR packet
size and memory consumption. The optimal value of k can be
calculated by taking the derivate of equation 1. We then find
that the derivate is 0 when k = m

n ln 2, hence yielding the
optimal number of hash functions for a given filter width. By
having a thorough understanding of the target application the
parameters k and m can be set to minimize the probability
of false positive. In Mercury, the parameters are adjustable,
however the default values are k = 4 and m = 128.

In Mercury the filter is created using the message digest
function MD5 [19]. MD5 is a cryptographic hash function
that hashes arbitrary length strings to 128 bits. The k hash
functions can then be constructed from k groups of r bits
each out of the 128 bit hash. The Bloom filter in Mercury is
implemented as shown in algorithm 1.

Algorithm 1 is used both when services are advertised
and requested. An example usage of Bloom filter based SD
is shown in Fig. 3. Each node advertises two services and
employs three hash functions to describe the services. After
performing service requests, the descriptors are stored in the
local cache of the other nodes. The cache consists of one
Bloom filter for each of the cached nodes (i.e. attenuated
Bloom filter).

In Proceedings of the 4th OLSR Interop & Workshop, October 14-16 2008

E.2. SERVICE DISCOVERY USING OLSR AND BLOOM FILTERS 109

1 0 0 1 1 0 1 1
0 1 2 3 4 5 6

B
1 1 0 0 0 1 1 1C

7

d

m

”Gateway” = {1,4,5}

”Printer” = {2,4,6}

C
ac

h
e

A
d
v
er

ti
se

d

se
rv

ic
es

0 1 1 0 1 1 1 0
0 1 2 3 4 5 6

A
1 1 0 0 0 1 1 1C

7

d

m

”Application1.0” = {0,6,7}

”File Server” = {3,4,7}

0 1 1 0 1 1 1 0
0 1 2 3 4 5 6

A
1 0 0 1 1 0 1 1B

7

d

m

”VideoCamera” = {1,5,6}

”Application1.0” = {0,6,7}

Mobile Ad hoc Network

Fig. 3. A Mobile Ad hoc Network consisting of three nodes. Each node use three hash functions to create the Bloom filter and employs two repositories:
One repository store the local services advertised, and one repository—implemented as an attenuated Bloom filter of depth d—serves as a cache storing
advertisements received from foreign nodes.

Algorithm 1 Calculate the Bloom filter v for service x

Require: x 6= 0
1: a⇐MD5(x)
2: r ⇐ 128/k
3: for i = 0 to k do
4: f ⇐ subbits(r ∗ i, (r ∗ (i + 1))− 1, a)
5: v[f mod m] = 1
6: end for

D. Caching

Caching is employed to save network bandwidth. Caching
may however, lead to false positive replies to the overlying
application (Fig. 1) if the advertised service exists in cache
even if the node with the advertised service is—due to network
clustering—not available anymore. The cache cleanup timeout
is therefore a trade-off between fast service queries and the
false positive rate. To reduce the amount of false replies to the
application, we propose a path-aware approach that consults
the local routing table for the availability of the nodes in the
cache. If a service exists is in the cache even if the node is
not available, Mercury removes the cache entry and performs
a new service discovery in order to find relevant nodes offering
a similar service.

III. IMPLEMENTATION AND USE

The Mercury SD proposal is implemented as an extension to
the UniK OLSR implementation (olsrd) [17]. Olsrd supports
the loading of dynamically loaded libraries for auxiliary func-
tions using a generic plugin interface [21]. Here, the Mercury
plugin is briefly described and example usage is given. The
code is available at [7] for further reference.

In order to allow communication between the plugin and
user applications, a simple Inter-process communication (IPC)
function is enabled via TCP/IP. Using IPC, services are
requested, advertised, and withdrawn using a set of simple
commands. By using Mercury and by adding only a few code

lines, any distributed application can be extended to facilitate
SD—regardless of programming language.

Peers [14] is a minimal SIP user agent (UA) written in Java.
It enables Voice over IP services by allowing a user to call
another user in the MANET using SIP. Using standard Peers,
the caller is required to enter the IP address belonging to the
node which it wants to call. By adding a few code lines, the
application can utilize Mercury service discovery to detect the
IP address of other SIP UAs automatically.

As shown, first the IPC socket is initialized. Then, two
objects are created to communicate with the socket:

mySD = new Socket("localhost",port);
out = new PrintWriter(mySD.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(

mySD.getInputStream()));

After initialization, the service ”SIP” is advertised to inform
other SIP-clients in the ad-hoc network about the existence of
the UA by advertising itself (ADVR):

out.println("ADVR SIP");

The application then immediately requests for all other SIP
UAs using the code word RQST:

out.println("RQST SIP ALL");

The application will now receive the IP addresses of all
the other SIP enabled clients—immediately as they connect—
via the IPC Interface (in). The successful discovery of other
clients can then be parsed using a simple string tokenizer.
By using only a few code lines, the Peers SIP software is
changed to automatically detect other SIP UA in the Ad hoc
network. Other existing distributed applications such as file
sharing, instant messaging, whiteboard sharing, may use the
same technique.

In Proceedings of the 4th OLSR Interop & Workshop, October 14-16 2008

110 APPENDIX E. PUBLICATIONS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 10 20 30 40 50 60 70

D
is

co
v
er

y
 o

v
er

h
ea

d
 (

B
y
te

s)

Number of nodes

PDP
SLP

Mercury (no caching)
Mercury

Fig. 4. Overhead using Mercury compared with SLPManet and PDP.

IV. PERFORMANCE EVALUATION

A. Simulation setup

The proposed service discovery mechanism is implemented
in ns-2.31 [22] as an extension to UM-OLSR [23]. The trans-
mission range is set to 100m and default OLSR parameters
according to [5] are used. For Mercury, the Bloom filter size
is set to 128 bits. All measurements are done after topology
convergence.

To make a qualitative benchmark of the overhead induced by
the service discovery process and the average time consumed
when requesting a service, the Mercury protocol is compared
with two widespread service discovery protocols, PDP [3]
and SLPManet [1]. As both PDP and SLPManet require an
underlying multicast routing protocol, our simulation of PDP
and SLPManet used nrlolsr [15] for ns2 with the extension
Simplified Multicast Forwarding (SMF) [13] used in S-MPR
mode. Mercury used OLSR MPR message forwarding.

B. Overhead

To measure the overhead, we used static square topologies
consisting of 4 to 64 nodes. The network had two services, lo-
cated on node 0 and 1. The services were randomly requested
by the other nodes with 5s intervals during the 1500s run. For
each static topology, 20 simulations were run and the 95%
confidence interval was estimated and presented in the figures.

Fig. 4 shows average network traffic induced by one single
service discovery with increasing network size. Compared to
its counterparts, the service discovery overhead is reduced by
a factor of 20 when using Mercury.

C. Delay

To measure the time delay when requesting a service, a
static network of nodes was chosen, and the nodes were
connected in chains of 2 to 20 nodes. The only service in
the network was located on node 0 and was requested by
the node on the edge of the chain with 10s intervals. The
delay between a service request and the successful receipt was
measured. Both Mercury and SLPManet utilize local caching

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 2 4 6 8 10 12 14 16 18 20

D
is

co
v
er

y
 d

el
ay

 (
s)

Number of nodes in chain

SLP
PDP

Mercury

Fig. 5. The service discovery delay using Mercury compared with SLP and
PDP.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 5 10 15 20

F
al

se
 p

o
si

ti
v

e
p

ro
b

ab
il

it
y

Node speed (m/s)

10s
100s

1000s

Fig. 6. False positive probability caused by caching in a dense network.

with 300s timeout, which reduces the average time delay. The
average delay results from all topologies are given in Fig. 5.
For all topologies, Mercury performs better or equal than its
counterparts.

D. Path-aware algorithm

False positive replies as a side effect of caching cause
unacceptable delays and reduces user satisfaction. The benefit
using our path-aware caching algorithm is clearly showed by
the simulations. We created two scenarios, one dense and one
sparse. The dense scenario consisted of 22 nodes in a 250m x
550m area. The sparse scenario increased the area to 500m x
1000m. In both cases, the nodes followed the random waypoint
model with constant speed. The nodes advertised one service
each, which was randomly requested. 20 simulations were run
for each combination of node speed and cache time and 95%
confidence interval was estimated.

The results show the expected false probability using
caching. We observe that an application requesting a service
has a probability up to 12% of receiving a false positive
reply when a cache timeout of 1000s is used (Fig. 6). The

In Proceedings of the 4th OLSR Interop & Workshop, October 14-16 2008

E.2. SERVICE DISCOVERY USING OLSR AND BLOOM FILTERS 111

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20

F
al

se
 p

o
si

ti
v
e

p
ro

b
ab

il
it

y

Node speed (m/s)

10s
100s

1000s

Fig. 7. False positive probability caused by caching in a sparse network.

astute reader may also observe that the false positive rate in
some cases tend to decrease as the node speed increases. This
phenomenon is caused by general increased node availability
(more entries in the routing table) as node availability increase
with increasing speed due to the nature of the random way-
point mobility model.

By examining the sparse setup (Fig. 7), we see that the false
positive probability increases considerably. The false positive
rate is effectively reduced using our algorithm since it verifies
node availability by examining the routing table.

V. DISCUSSION

The performance results reveal that Mercury is superior to
SLPManet and PDP regarding overhead. The major overhead
reduction is caused by caching. Service descriptor compression
achieved from the Bloom filters (compared to transmitting
the service descriptors as text), and piggybacking of the
information in OLSR packets further reduce the overhead. Due
to these optimizations, it is expected that Mercury outperforms
other cross-layer SD proposals [11] and [12].

The time consumed to connect to the actual service is
expected to be many times higher than the discovery delay
found in the simulations. We therefore state that the service
discovery delay is promising for all service discovery alterna-
tives. However, caching is a way to achieve further reduction
of the delay.

The proposed path-aware caching architecture, reduces the
number of false positives and hence, increases application per-
formance and user-friendliness. An amount (albeit relatively
small) of false positive replies may still occur, as network
mobility and routing protocol settings may lead to erroneous
entries in the routing table.

We state that a combination of optimization techniques as
presented by Mercury is inevitable in order to support service
discovery in bandwidth-constrained environments.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a method of service
discovery using a combination of Bloom filters, the extensi-

bility feature of the OLSR, and a path-aware caching regime.
The false positive property of Bloom filters is evaluated
and discussed. By simulation, we have demonstrated the
performance gain by our cross-layer protocol compared to
application layer service discovery alternatives. We also have
provided an implementation for real-world usage available for
download. Future work includes further optimizations and tests
in real deployed networks focusing on bandwidth-constrained
environments.

REFERENCES

[1] M. Abou El Saoud, T. Kunz, and S. Mahmoud. SLPManet: service
location protocol for MANET. In IWCMC ’06: Proceeding of the 2006
international conference on Communications and mobile computing,
pages 701–706, New York, NY, USA, 2006.

[2] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[3] C. Campo, C. Garc’ia-Rubio, A. M. Lopez, and F. Almenarez. PDP: a
lightweight discovery protocol for local-scope interactions in wireless ad
hoc networks. Comput. Networks, 50(17):3264–3283, December 2006.

[4] S. Cheshire and M. Krochmal. DNS-Based Service Discovery, Au-
gust. INTERNET-DRAFT draft-cheshire-dnsext-dns-sd-04.txt, Work in
progress, 2006.

[5] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol
(OLSR). RFC 3626 (Experimental), October 2003.

[6] P. E. Engelstad, Y. Zheng, R. Koodli, and C. E. Perkins. Service
discovery architectures for on-demand ad hoc networks. International
Journal of Ad Hoc and Sensor Wireless Networks, Old City Publishing
(OCP Science), 2(1):27–58, March 2006.

[7] J. Flathagen. Mercury Service Discovery Plugin for OLSRd. (http://olsr-
mercury.sourceforge.net), Accessed 2008.

[8] Y. Goland, T. Cai, P. Leach, and Y. Gu. Simple service discovery
protocol/1.0. INTERNET-DRAFT draft-cai-ssdp-v1-03.txt, Work in
progress, 1999.

[9] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location
Protocol, Version 2. RFC 2608 (Proposed Standard), June. Updated by
RFC 3224, 1999.

[10] S. Helal, N. Desai, V. Verma, and C. Lee. Konark - a service discovery
and delivery protocol for ad-hoc networks. Proceedings of the Third
IEEE Conference on Wireless Communication Networks (WCNC), New
Orleans, 2003.

[11] J. L. Jodra, M. Vara, J. M. Cabero, and J. Bagazgoitia. Service
discovery mechanism over OLSR for mobile ad-hoc networks. Advanced
Information Networking and Applications, AINA, 2:534–542, 2006.

[12] L. Li and L. Lamont. A lightweight service discovery mechanism for
mobile ad hoc pervasive environment using cross-layer design. Pervasive
Computing and Communications Workshops, pages 55–59, 2005.

[13] J. Macker. Simplified multicast forwarding for manet. INTERNET-
DRAFT draft-ietf-manet-smf-05, Work in progress, 2007.

[14] Martineau, Y. Peers SIP User Agent. (http://peers.sourceforge.net/),
Accessed 2008.

[15] Naval Research Laboratory. NRL-OLSR. (http://cs.itd.nrl.navy.mil/),
Accessed 2008.

[16] A. Obaid, A. Khir, and H. Mili. A Routing Based Service Discovery
Protocol for Ad hoc Networks. In ICNS ’07: Proceedings of the Third
International Conference on Networking and Services, 2007.

[17] olsr.org. The OLSR daemon. (http://www.olsr.org/), Accessed 2008.
[18] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance

Vector (AODV) Routing. RFC 3561 (Experimental), July 2003.
[19] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informa-

tional), April 1992.
[20] Sun. Jini. (http://www.jini.org/), Accessed 2008.
[21] A. Tønnesen, A. Hafslund and Ø. Kure. The Unik-OLSR Plugin Library.

In The OLSR Interop and Workshop, 2004.
[22] University of California. ns2 Network Simulator.

(http://www.isi.edu.nsnam/ns/), Accessed 2008.
[23] University of Murcia. UM-OLSR. (http://masimum.dif.um.es/), Ac-

cessed 2008.

In Proceedings of the 4th OLSR Interop & Workshop, October 14-16 2008

112 APPENDIX E. PUBLICATIONS

List of Acronyms

AODV Ad-hoc On-demand Distance Vector
BSD Berkeley Software Distribution
CBR Constant Bit Rate
DNS Domain Name System
DNS-SD Domain Name System-based Service Discovery
DSR Dynamic Source Routing
DYMO Dynamic MANET On-demand Routing Protocol
FSR Fisheye State Routing
GPS Global Positioning System
JLS Jini Lookup Service
KDE K Desktop Environment
MANET Mobile Ad-hoc Network
MD5 Message-Digest Algorithm 5
MPR Multi Point Relay
MTU Maximum Transmission Unit
OLSR Optimized Link State Routing Protocol
OSPF Open Shortest Path First
OWL Web Ontology Language
PDP Pervasive Discovery Protocol
RFC Request For Comment
RIP Routing Information Protocol
RMI Remote Method Invocation
RTP Real-time Transport Protocol
SBDM Simple DataBase Manager
SDP Session Description Protocol
SIP Session Initiation Protocol
SMF Simplified Multicast Forwarding
SOAP Simple Object Access Protocol
SSDP Simple Service Discovery Protocol
TBRPF Topology Broadcast Based on Reverse-Path Forwarding
TLV Type-Length-Value structure
TORA Temporally-Ordered Routing Algorithm
TTL Time To Live
UniK University Graduate Center at Kjeller
UPnP Universal Plug and Play
UUID Unique Universal Identifier

113

114 LIST OF ACRONYMS

WOSPF Wireless Open Shortest Path First
WSDL Web Service Description Language

Bibliography

[1] M. Abou El Saoud, T. Kunz, and S. Mahmoud. BENCEManet: An Evaluation Framework
for Service Discovery Protocols in MANET. Sensor and Ad Hoc Communications and
Networks, 2006. SECON ’06. 2006 3rd Annual IEEE Communications Society on, 3:860–
865, 2006.

[2] M. Abou El Saoud, T. Kunz, and S. Mahmoud. SLPManet: service location protocol for
MANET. In IWCMC ’06: Proceeding of the 2006 international conference on Communi-
cations and mobile computing, pages 701–706, New York, NY, USA, 2006.

[3] J. Ahrenholz, T. Henderson, P. Spagnolo, E. Baccelli, T. Clausen, and P. Jaquet. OSPFv2
Wireless Interface Type. Internet-Draft draft-spagnolo-manet-ospf-wireless-interface-01,
Internet Engineering Task Force, May 2004. Work in progress.

[4] V. Arneson, K. Øvsthus, O. I. Bentstuen, and J. Sander. Field trials with IEEE 802.11b-
based UHF tactical wideband radio. In Military Communications Conference, 2005. MIL-
COM 2005. IEEE, pages 493–498, October 2005.

[5] N. Banerjee, A. Acharya, and S. Das. Enabling SIP-based sessions in ad hoc networks.
Wireless Networks, 13(4):461–479, August 2007.

[6] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination function.
IEEE Journal on Selected Areas in Communications, 18(3):535–547, 2000.

[7] M. J. Blange, I. P. Karkowski, and B. C. B. Vermeulen. Service discovery in heterogeneous
wireless networks. International Workshop on Wireless Ad-Hoc Networks, pages 295–299,
May-3 June 2004.

[8] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422–426, 1970.

[9] C. Bormann, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu, L-E. Jonsson,
R. Hakenberg, T. Koren, K. Le, Z. Liu, A. Martensson, A. Miyazaki, K. Svanbro,
T. Wiebke, T. Yoshimura, and H. Zheng. RObust Header Compression (ROHC): Frame-
work and four profiles: RTP, UDP, ESP, and uncompressed. RFC 3095 (Proposed Stan-
dard), July 2001. Updated by RFCs 3759, 4815.

[10] A. Broder and M. Mitzenmacher. Network Applications of Bloom Filters: A Survey.
Internet Mathematics, 1(4):485–509, 2002.

115

116 BIBLIOGRAPHY

[11] T. Camp, J. Boleng, and V. Davies. A Survey of Mobility Models for Ad Hoc Network
Research. Wireless Communications & Mobile Computing (WCMC): Special issue on
Mobile Ad Hoc Networking: Research, Trends and Applications, 2(5):483–502, 2002.

[12] C. Campo, C. Garc’ia-Rubio, A. M. Lopez, and F. Almenarez. PDP: a lightweight discov-
ery protocol for local-scope interactions in wireless ad hoc networks. Comput. Networks,
50(17):3264–3283, December 2006.

[13] I. Chakeres and C. Perkins. Dynamic manet on-demand (dymo) routing, May.
INTERNET-DRAFT draft-ietf-manet-dymo-09, Work in progress, 2007.

[14] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of IPv4 Link-Local
Addresses. RFC 3927 (Proposed Standard), May 2005.

[15] S. Cheshire and M. Krochmal. DNS-Based Service Discovery, August. INTERNET-
DRAFT draft-cheshire-dnsext-dns-sd-04.txt, Work in progress, 2006.

[16] S. Cheshire and D. Steinberg. Zero Configuration Networking: The Definitive Guide.
O’Reilly Media, Inc., December 2005.

[17] I. Chlamtac, M. Conti, and J. J. Liu. Mobile ad hoc networking: imperatives and chal-
lenges. Ad Hoc Networks, 1(1):13–64, July 2003.

[18] T. Clausen and E. Baccelli. A simple address autoconfiguration mechanism for OLSR.
IEEE International Symposium on Circuits and Systems, ISCAS, pages 2971–2974 Vol. 3,
May 2005.

[19] T. Clausen, C. Dearlove, J. Dean, and C. Adjih. Generalized manet packet/message format,
March. INTERNET-DRAFT draft-ietf-manet-packetbb-16.txt, Work in progress, 2008.

[20] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR). RFC 3626
(Experimental), October 2003.

[21] T. Clausen, P. Jacquet, and L. Viennot. Comparative study of routing protocols for mobile
ad-hoc networks. In Proceeding of The First Annual Mediterranean Ad Hoc Networking
Workshop, September 2002.

[22] G. Costanzi, R. Lo Cigno, A. Ghittino, and S. Annese. Route Stabilization in Infrastruc-
tured Wireless Mesh Networks: an OLSRD Based Solution. Fifth Annual Conference on
Wireless on Demand Network Systems and Services, WONS, pages 109–115, 2008.

[23] J. Dean. Anycast Routing in OLSR MANETs. Presentation held at the 4th OLSR Interop
and Workshop Ottawa, 2008.

[24] F. Delmastro. From pastry to crossroad: Cross-layer ring overlay for ad hoc networks.
Third IEEE International Conference on Pervasive Computing and Communications
Workshops, PerCom 2005 Workshops, pages 60–64, 2005.

[25] P. E. Engelstad and Y. Zheng. Evaluation of service discovery architectures for mobile ad
hoc networks. In WONS ’05: Proceedings of the Second Annual Conference on Wireless
On-demand Network Systems and Services (WONS’05), pages 2–15, Washington, DC,
USA, 2005. IEEE Computer Society.

BIBLIOGRAPHY 117

[26] P. E. Engelstad, Y. Zheng, R. Koodli, and C. E. Perkins. Service discovery architectures
for on-demand ad hoc networks. International Journal of Ad Hoc and Sensor Wireless
Networks, Old City Publishing (OCP Science), 2(1):27–58, March 2006.

[27] J. Flathagen. Mercury Service Discovery Plugin for OLSRd. (http://olsr-
mercury.sourceforge.net), Accessed 2008.

[28] Freifunk.net. olsrexperiment.de. (http://olsrexperiment.de), Accessed 2008.

[29] M. Gerla, X. Hong, and G. Pei. Fisheye State Routing (FSR) for Ad Hoc Networks.
Internet-Draft draft-ietf-manet-fsr-03, Internet Engineering Task Force, June 2002. Work
in progress.

[30] Y. Goland, T. Cai, P. Leach, and Y. Gu. Simple service discovery protocol/1.0, October.
INTERNET-DRAFT draft-cai-ssdp-v1-03.txt, Work in progress, 1999.

[31] C. Gomez, D. Garcia, and J. Paradells. Improving performance of a real ad-hoc network
by tuning OLSR parameters. In Proceedings of the 10th IEEE Symposium on Computers
and Communications, ISCC 2005, pages 16–21, 2005.

[32] R. Gupta, S. Talwar, and D.P. Agrawal. Jini home networking: a step toward pervasive
computing. Computer, 35(8):34–40, Aug 2002.

[33] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Protocol, Version 2.
RFC 2608 (Proposed Standard), June 1999. Updated by RFC 3224.

[34] R. Haarman. Ahoy: A proximity-based discovery protocol. Master’s thesis, University of
Twente, January 2007.

[35] M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol. RFC 4566
(Proposed Standard), July 2006.

[36] C.L. Hedrick. Routing Information Protocol. RFC 1058 (Historic), June 1988. Updated
by RFCs 1388, 1723.

[37] S. Helal, N. Desai, V. Verma, and C. Lee. Konark - a service discovery and delivery
protocol for ad-hoc networks. Proceedings of the Third IEEE Conference on Wireless
Communication Networks (WCNC), New Orleans, 2003.

[38] S Hong, S. Srinivasan, and H. Schulzrinne. Accelerating Service Discovery in Ad-Hoc
Zero Configuration Networking. Global Telecommunications Conference, 2007. GLOBE-
COM ’07. IEEE, pages 961–965, Nov. 2007.

[39] Y. Huang, S. N. Bhatti, and D. Parker. Tuning OLSR. In Proceedings of the 17th Inter-
national Symposium on Personal, Indoor and Mobile Radio Communications, pages 1–5,
2006.

[40] Y. Huang, W. He, K. Nahrstedt, and W. C. Lee. Incident Scene Mobility Analysis. IEEE
Conference on Technologies for Homeland Security, pages 257–262, 2008.

[41] INRIA. OOLSR. (http://hipercom.inria.fr/OOLSR//), Accessed 2008.

118 BIBLIOGRAPHY

[42] J. Haerri, F. Filali and C. Bonnet. Performance Comparison of AODV and OLSR in
VANETs Urban Environments under Realistic Mobility Patterns. Proceedings of the The
Fifth Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net 2006), pages
176–183, 2006.

[43] J. L. Jodra, M. Vara, J. M. Cabero, and J. Bagazgoitia. Service discovery mechanism over
OLSR for mobile ad-hoc networks. Advanced Information Networking and Applications,
AINA, 2:534–542, 2006.

[44] F. T. Johnsen, J. Flathagen, T. Gagnes, R. Haakseth, T. Hafsøe, J. Halvorsen, N. A.
Nordbotten, and M. Skjegstad. Web Services and Service Discovery. FFI/RAPPORT
2008/01064, Norwegian Defence Research Establishment, 2008.

[45] D. Johnson, Y. Hu, and D. Maltz. The Dynamic Source Routing Protocol (DSR) for
Mobile Ad Hoc Networks for IPv4. RFC 4728 (Experimental), February 2007.

[46] M. Kaddoura and S. Schneider. SEEHOC: scalable and robust end-to-end header com-
pression techniques for wireless ad hoc networks. Global Telecommunications Conference
Workshops, 2004. GlobeCom Workshops 2004. IEEE, pages 141–146, 2004.

[47] V. Kawadia and P.R. Kumar. A Cautionary Perspective on Cross Layer Design. IEEE
Wireless Commun., 12(1):3–11, Feb 2005.

[48] W. Kiess and M. Mauve. A survey on real-world implementations of mobile ad-hoc net-
works. Ad Hoc Netw., 5(3):324–339, April 2007.

[49] M. Kim, D. Kotz, and S. Kim. Extracting a Mobility Model from Real User Traces.
Proceedings of the 25th IEEE International Conference on Computer Communications,
INFOCOM 2006, pages 1–13, 2006.

[50] R. Koodli and C. E. Perkins. Service Discovery in On-Demand Ad Hoc Net-
works. Internet-Draft draft-koodli-manet-servicediscovery-00.txt, Internet Engineering
Task Force, October 2002. Work in progress.

[51] J. Kopena, E. Sultanik, Gaurav Naik, I. Howley, M. Peysakhov, V. A. Cicirello, M. Kam,
and W. Regli. Service-based computing on MANETs: enabling dynamic interoperability
of first responders. Intelligent Systems, IEEE, 20(5):17–25, 2005.

[52] M. Kropff, T. Krop, M. Hollick, P. S. Mogre, and R. Steinmetz. A survey on real world
and emulation testbeds for mobile ad hoc networks. Proceedings of the 2nd International
Conference on Testbeds and Research Infrastructures for the Development of Networks
and Communities, TRIDENTCOM 2006, pages 6 pp.+, 2006.

[53] S. Kurkowski, T. Camp, and M. Colagrosso. MANET simulation studies: the incredibles.
SIGMOBILE Mob. Comput. Commun. Rev., 9(4):50–61, October 2005.

[54] S. Kurkowski, T. Camp, N. Mushell, and M. Colagrosso. A Visualization and Analysis
Tool for NS-2 Wireless Simulations: iNSpect. Proceedings of the 13th IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems, MASCOTS ’05, pages 503–506, 2005.

BIBLIOGRAPHY 119

[55] Y. Lafon and N. Mitra. SOAP version 1.2 part 0: Primer (second edition). Technical
report, W3C, April 2007. http://www.w3.org/TR/2007/REC-soap12-part0-20070427/.

[56] F. Y. Li, L. Vandonif, G. Ziccaf, and S. Zanoli. OLSR Mesh Networks for Broadband Ac-
cess: Enhancements, Implementation and Deployment. Proceedings of the 4th IEEE In-
ternational Conference on Circuits and Systems for Communications, ICCSC 2008, pages
802–806, 2008.

[57] L. Li and L. Lamont. A lightweight service discovery mechanism for mobile ad hoc per-
vasive environment using cross-layer design. Pervasive Computing and Communications
Workshops, pages 55–59, 2005.

[58] L. Li and L. Lamont. Support of multimedia SIP applications in mobile ad hoc networks:
service discovery and networking architecture. Global Telecommunications Conference,
2005. GLOBECOM ’05. IEEE, 6:5 pp.+, 2005.

[59] C. Kevin Liu and D. Booth. Web services description language (WSDL) version 2.0 part
0: Primer. W3C recommendation, W3C, June 2007. http://www.w3.org/TR/2007/REC-
wsdl20-primer-20070626.

[60] H. Lundgren, E. Nordstrom, and C. Tschudin. Coping with communication gray zones
in IEEE 802.11b based ad hoc networks. In Proceedings of the 5th ACM international
workshop on Wireless mobile multimedia, WOWMOM ’02, pages 49–55, 2002.

[61] J. Macker. Simplified multicast forwarding for manet, June. INTERNET-DRAFT draft-
ietf-manet-smf-05, Work in progress, 2007.

[62] J. Macker, I. Downard, J. Dean, and B. Adamson. Evaluation of distributed cover set
algorithms in mobile ad hoc network for simplified multicast forwarding. SIGMOBILE
Mob. Comput. Commun. Rev., 11(3):1–11, July 2007.

[63] S. Magnuson. Call for help: For first responders, high-tech communications still out of
reach. In National Defence, pages 36–40, March 2008.

[64] B.S. Manoj and Alexandra Hubenko Baker. Communication challenges in emergency
response. Commun. ACM, 50(3):51–53, 2007.

[65] Martineau, Y. Peers SIP User Agent. (http://peers.sourceforge.net/), Accessed 2008.

[66] J. Moy. OSPF Version 2. RFC 2328 (Standard), April 1998.

[67] Naval Research Laboratory. NRL-OLSR. (http://cs.itd.nrl.navy.mil/), Accessed 2008.

[68] D. A. Norman. The Design of Everyday Things. Basic Books, September 2002.

[69] A. Obaid, A. Khir, and H. Mili. A Routing Based Service Discovery Protocol for Ad
hoc Networks. In Proceedings of the Third International Conference on Networking and
Services, ICNS ’07, 2007.

[70] R. Ogier, F. Templin, and M. Lewis. Topology Dissemination Based on Reverse-Path
Forwarding (TBRPF). RFC 3684 (Experimental), February 2004.

[71] olsr.org. The OLSR daemon. (http://www.olsr.org/), Accessed 2008.

120 BIBLIOGRAPHY

[72] OMNeT++. (http://www.omnetpp.org), Accessed 2008.

[73] V. Park and S. Corson. Temporally-Ordered Routing Algorithm (TORA) Version 1 Func-
tional Specification. Internet-Draft draft-ietf-manet-tora-spec-04,, Internet Engineering
Task Force, July 2001. Work in progress.

[74] C. Partridge, T. Mendez, and W. Milliken. Host Anycasting Service. RFC 1546 (Informa-
tional), November 1993.

[75] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance Vector (AODV)
Routing. RFC 3561 (Experimental), July 2003.

[76] S. C. Rhea and J. Kubiatowicz. Probabilistic location and routing. Proceedings of the
Twenty-First Annual Joint Conference of the IEEE Computer and Communications Soci-
eties, IEEE INFOCOM 2002, 3:1248–1257 vol.3, 2002.

[77] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informational), April 1992.

[78] F. J. Ros and M. R. Ruiz. Implementing a New Manet Unicasting Routing Protocol in
NS2. (University of Murcia), 2004.

[79] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Han-
dley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261 (Proposed Standard),
June 2002. Updated by RFCs 3265, 3853, 4320, 4916.

[80] NATO RTO. Awareness of emerging wireless technologies: Ad-hoc and personal area
networks standards and emerging technologies. Technical Report RTO-TR-IST-035-
AC/323(IST-035)TP/32, NATO RTO, 2007.

[81] F. Sailhan and V. Issarny. Scalable service discovery for manet. Proceedings of the Third
IEEE International Conference on Pervasive Computing and Communications, PerCom
2005, pages 235–244, 2005.

[82] J. M. S. Santana, M. Petrova, and P. Mahonen. UPNP Service Discovery for Heteroge-
neous Networks. 17th International IEEE Symposium on Personal, Indoor and Mobile
Radio Communications, pages 1–5, Sept. 2006.

[83] J. Schneider and T. Kamiya. Efficient XML interchange (EXI) format 1.0. W3C working
draft, W3C, March 2008. http://www.w3.org/TR/2008/WD-exi-20080326/.

[84] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. RFC 3550 (Standard), July 2003.

[85] V. Srivastava and M. Motani. Cross-layer design: a survey and the road ahead. Communi-
cations Magazine, IEEE, 43(12):112–119, 2005.

[86] J. A. Stine. Cross-Layer Design of MANETs: The Only Option. Military Communications
Conference, MILCOM 2006, pages 1–7, 2006.

[87] Sun. Jini. (http://www.jini.org/), Accessed 2008.

[88] The Ohio State University. J-Sim Network simulator. (http://www.j-sim.org), Accessed
2008.

BIBLIOGRAPHY 121

[89] A. Tønnesen. Impementing and extending the Optimized Link State Routing Protocol.
Master’s thesis, UiO, August 2004.

[90] A. Tønnesen, A. Hafslund and Ø. Kure. The Unik-OLSR Plugin Library. In Proceedings
of the The first OLSR Interop and Workshop, 2004.

[91] UCLA. GloMoSim. (http://pcl.cs.ucla.edu/projects/glomosim), Accessed 2008.

[92] University of California. ns2 Network Simulator. (http://www.isi.edu.nsnam/ns/), Ac-
cessed 2008.

[93] University of Murcia. UM-OLSR. (http://masimum.dif.um.es/), Accessed 2008.

[94] J. Wang and X. Lu. Route recovery based on anycast policy in mobile ad hoc networks.
In Proceedings of International Conference on Communication Technology, ICCT 2003,
volume 2, pages 1262–1265 vol.2, 2003.

[95] Wireless network community Roma. Ninux. (http://ninux.org), Accessed 2008.

[96] J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful. Proceedings of
INFOCOM 2003, pages 1312–1321, 2003.

[97] L. Zhang, Z. Shi, and Q. Shen. A Service Discovery Architecture based on Anycast in
Pervasive Computing Environments. Proceedings of the 31st Computer Software and
Applications Conference, COMPSAC 2007, 2:101–108, 2007.

[98] Y. Zheng. Service Discovery in On-Demand Mobile Ad-hoc Networks. Master’s thesis,
UiO, July 2004.

[99] H. Zimmermann. Availability of Technologies versus Capabilities of Users. In Proceed-
ings of the 3rd International ISCRAM conference, pages 66–71, 2006.

